PyTorch 2.0

2023-08-27
Agenda

1. Compiler frontend UX
2. Deep dive
 a. TorchDynamo
 b. AOTAutograd
 c. TorchInductor
3. PT2 for New Hardware Backends
Compiler Frontend UX

- **torch.compile**
 - Goal - Make PyTorch faster w/o sacrificing eager user experience
 - UX - add torch.compile(model) to your model script
 - Captures *acceleratable regions/graphs* in your program (TorchDynamo, AOTAutograd)
 - Generates high performance machine code (TorchInductor)

- **torch.export**
 - Goal - Maximize performance and portability by extracting full graph from a model with some trade-off in user experience.
 - UX - Call torch.export(model) **Ahead-Of-Time** to generate a stand-alone artifact that can be executed without Python.
 - Captures full graph in your program through TorchDynamo and AOTAutograd too
PyTorch Compiler Frontend

User model code

TorchDynamo
* VariableTrackers
* Guards

dynamo FX graph(s) + residual bytecode

AOTAutograd
* Functionalization
* Decompositions

functional ATen IR graph

PyTorch Compiler APIs

torch.compile

torch.export
TorchDynamo
The dream: “Just add torch.compile!”

Compare w/ TorchScript: you must TSify your model to run it

PyTorch eager’s charm is its flexibility:

- Converting tensor into native Python types (x.item(), x.tolist())
- Using other frameworks (numpy/xarray etc)
- Exceptions, closures, generators etc Python constructs

TorchDynamo is designed so that we don’t need 100% feature coverage: unsupported features can transparently fallback to eager (graph break)
TorchDynamo Overview

TorchDynamo interposes on frame evaluation in an *observationally equivalent* way.

- Extracts FX graph(s)
- Optimized bytecode - calls extracted graphs and bytecode for stuff outside graphs
- Guards - checks on the input conditions for which the graph is valid to use
TorchDynamo Bytecode Analysis - VariableTrackers

- TorchDynamo symbolically evaluates Python bytecode
- Each Python object is tracked by a Variable Tracker
 - torch.* ops - TorchVariable
 - torch.tensor - TensorVariable
 - Python builtin variables - BuiltInVariable
 - Python lists/dicts - ListVariable, DictVariable
- Operations on a TensorVariable adds a FX node in the graph

```
LOAD_GLOBAL torch []
LOAD_ATTR clamp_min [TorchVariable(<module 'torch' from '/scratch/anijain/work/pytorch/torch/__init__.py'>)]
LOAD_FAST a [TorchVariable(<built-in method clamp_min of type object at 0x7f258f1d2b80>)]
LOAD_FAST b [TorchVariable(<built-in method clamp_min of type object at 0x7f258f1d2b80>), TensorVariable()]
CALL_FUNCTION 2 [TorchVariable(<built-in method clamp_min of type object at 0x7f258f1d2b80>), TensorVariable(), ConstantVariable(int)]
LOAD_CONST 3 [TensorVariable()]
BINARY_MULTIPLY None [TensorVariable(), ConstantVariable(int)]
RETURN_VALUE None [TensorVariable()]
```
TorchDynamo Guards and Cache

- Guards - set of conditions observed during JIT compilation
 - TorchDynamo produced graph is specialized for these conditions
- Compilation unit - Optimized bytecode (including compiled graph) and associated guards
- TorchDynamo cache - Linked list of compilation units per frame object
- Recompilation happens if none of cached guards satisfy the new input conditions
@torch.compile()
def func(a, b):
 return torch.clamp_min(a, b) * 3

p = torch.tensor([0.4, -0.2], requires_grad=True, device='cuda')
loss = func(p, 0).sum()
loss.backward()
print(p.grad)
Guards:

```python
___check_tensor(L['a'])
___check_type_id(L['b'], 7596096)
L['b'] == 0
```

Optimized bytecode:

```
0 LOAD_GLOBAL 2 (__compiled_fn_0)
2 LOAD_FAST 0 (a)
4 CALL_FUNCTION 1
6 UNPACK_SEQUENCE 1
8 RETURN_VALUE
```

Compiled Fx Graph:

```python
def forward(self, L_a_ : torch.Tensor):
    l_a_ = L_a_
    clamp_min = torch.clamp_min(l_a_, 0)
    mul = clamp_min * 3
    return (mul,)
```
TorchDynamo Bytecode Analysis - Graph Break

- On encountering an unsupported Python construct
 - Pre-graph-break-bytecode - Convert it to FX graph call + residual bytecode
 - Post-graph-break-bytecode - Wrap it in a new function object
 - New bytecode - Call FX graph + residual bytecode + continuation
- TorchDynamo is called again on the continuation function at its invocation
- Graph breaks can be expensive because of guards
AOTAutograd
Why AOTAutograd? Calling convention

Naive picture:

- FX graph -> Compiler -> Compiled callable
- FX graph takes a bunch of Tensors and produces Tensors

Problem:

- PyTorch eager’s calling convention is much more complicated!
- Aliasing: Input tensors may be aliased, mutations must reflect to all aliases
- Autograd: Produced tensors must have grad_fn, which can be backward()’ed through
- Subclass: Input/output tensors might be subclasses

Solution: AOTAutograd deals with the complicated interactions, so inner backends don’t have to
Why AOTAutograd? Graph normalization

Dynamo produced FX graph: torch.* calls, looks like Python

Problem:

- torch.* argument resolution is nontrivial (default arguments, overload matching)
- Can have mutating operations (e.g., add_); mutating operations difficult to work with in compiler (code motion no longer always valid)

Solution: AOTAutograd canonicalizes all IR nodes into functional, ATen operators which are easy to deal with (NB: input mutation)
AOTAutograd architecture

Autograd-aware input tensors
YES aliasing
YES autograd graph
YES subclasses

runtime unwrapping, deduping

Compiled FX graph of ATen calls
NO mutation
NO autograd control

FX graph of torch.* calls
YES mutation
YES autograd control

Functionalization
Decomposition
Tracing

autograd.function wrapping

Autograd-aware output tensors

Plain input tensors
NO aliasing
NO autograd graph
MAYBE subclasses

Plain output tensors
AOTAutograd example

```python
@torch.compile()
def func(a, b):
    return torch.clamp_min(a, b) * 3

p = torch.tensor([0.4, -0.2], requires_grad=True, device='cuda')
loss = func(p, 0).sum()
loss.backward()
print(p.grad)
```
def forward(self, primals, tangents):
 primals_1, tangents_1, = fx_pytree.tree_flatten_spec([primals, tangents],
 self._in_spec)

 _tensor_constant0 = self._tensor_constant0
 maximum_default = torch.ops.aten.maximum.default(primals_1, _tensor_constant0)
 mul_tensor = torch.ops.aten.mul.Tensor(maximum_default, 3)
 is_same_size_default = torch.ops.aten.is_same_size.default(mul_tensor,
 tangents_1)
 mul_tensor_1 = torch.ops.aten.mul.Tensor(tangents_1, 3); tangents_1 = None
 scalar_tensor = torch.ops.aten.scalar_tensor.default(0.0, dtype = torch.float32,
 layout = torch.strided, device = device(type='cuda', index=0))
 ge_scalar = torch.ops.aten.ge.Scalar(primals_1, 0)
 where_self = torch.ops.aten.where.self(ge_scalar, mul_tensor_1, scalar_tensor)

 return pytree.tree_unflatten([mul_tensor, where_self], self._out_spec)

 torch.clamp_min(a, b) * 3

forward / backward

AOTAutograd example: TORCH_LOGS=aot_joint_graph

```python
def forward(self, primals, tangents):
    primals_1, tangents_1, = fx_pytree.tree_flatten_spec([primals, tangents],
    self._in_spec)

    _tensor_constant0 = self._tensor_constant0
    maximum_default = torch.ops.aten.maximum.default(primals_1, _tensor_constant0)
    mul_tensor = torch.ops.aten.mul.Tensor(maximum_default, 3)
    is_same_size_default = torch.ops.aten.is_same_size.default(mul_tensor,
    tangents_1)
    mul_tensor_1 = torch.ops.aten.mul.Tensor(tangents_1, 3);  tangents_1 = None
    scalar_tensor = torch.ops.aten.scalar_tensor.default(0.0, dtype = torch.float32,
    layout = torch.strided, device = device(type='cuda', index=0))
    ge_scalar = torch.ops.aten.ge.Scalar(primals_1, 0)
    where_self = torch.ops.aten.where.self(ge_scalar, mul_tensor_1, scalar_tensor)

    return pytree.tree_unflatten([mul_tensor, where_self], self._out_spec)

    torch.clamp_min(a, b) * 3
```

forward

- **name**: clamp_min(Tensor self, Scalar min) -> Tensor
- **self**: where(self >= min, grad, at::scalar_tensor(0.))

backward
AOTAutograd example: TORCH_LOGS=aot_graphs

def forward(self, primals_1):
 _tensor_constant0 = self._tensor_constant0
 maximum_default = torch.ops.aten.maximum.default(primals_1, _tensor_constant0)
 mul_tensor = torch.ops.aten.mul.Tensor(maximum_default, 3)
 ge_scalar = torch.ops.aten.ge.Scalar(primals_1, 0)
 return [mul_tensor, ge_scalar]

def backward(self, ge_scalar, tangents_1):
 mul_tensor_1 = torch.ops.aten.mul.Tensor(tangents_1, 3)
 scalar_tensor = torch.ops.aten.scalar_tensor.default(0.0, dtype=torch.float32, layout=torch.strided, device=device(type='cuda', index=0))
 where_self = torch.ops.aten.where.self(ge_scalar, mul_tensor_1, scalar_tensor)
 return [where_self]

 torch.clamp_min(a, b) * 3 # name: clamp_min(Tensor self, Scalar min) -> Tensor
 self: where(self >= min, grad, at::scalar_tensor(0.))
AOTAutograd example: lowering through eager mode

def forward(self, primals_1):
 _tensor_constant0 = self._tensor_constant0
 maximum_default = torch.ops.aten.maximum.default(primals_1, _tensor_constant0)
 mul_tensor = torch.ops.aten.mul.Tensor(maximum_default, 3)
 ge_scalar = torch.ops.aten.ge.Scalar(primals_1, 0)
 return [mul_tensor, ge_scalar]

def backward(self, ge_scalar, tangents_1):
 mul_tensor_1 = torch.ops.aten.mul.Tensor(tangents_1, 3)
 scalar_tensor = torch.ops.aten.scalar_tensor.default(0.0, dtype=torch.float32,
 layout=torch.strided, device=device(type='cuda', index=0))
 where_self = torch.ops.aten.where.self(ge_scalar, mul_tensor_1, scalar_tensor)
 return [where_self]

torch.clamp_min(a, b) * 3
PrimTorch decompositions

```python
# torch/_refs/__init__.py
@register_decomposition(torch.ops.aten.clamp_min)
@out_wrapper()
def clamp_min(
    self: TensorLikeType,
    min: TensorOrNumberLikeType = None,
) -> TensorLikeType:
    return torch.clamp(self, min=min)
```

torch.clamp_min is just syntax sugar around torch.clamp...

```python
# torchinductor/decomposition.py
@register_decomposition([aten.clamp])
def clamp(x, min=None, max=None):
    if min is not None:
        x = torch.maximum(x, torch.tensor(min, dtype=x.dtype, device=x.device))
    if max is not None:
        x = torch.minimum(x, torch.tensor(max, dtype=x.dtype, device=x.device))
    return x
```

...torch.clamp internally dispatches to aten.clamp...

...which dispatches to torch.maximum (aka aten.maximum)
Functionalization

If you have: \(x.\text{add}_\text{(y)} \), convert into \(x._\text{new} = x.\text{add}(y) \)

What if you have an alias? \(x2 = x[0]; x.\text{add}_\text{(y)} \)

Must update all aliases! Functionalization knows to do this:

\[
\begin{align*}
 x2._\text{new} &= x2.\text{add}(y[0]) \\
 x._\text{new} &= x.\text{add}(y)
\end{align*}
\]

Note: must know if operators mutate or not! Captured by JIT schema
TorchInductor
TorchInductor Principles

- **PyTorch Native**
 - Similar abstractions to PyTorch eager to allow support for nearly all of PyTorch, with a thin translation layer.

- **Python First**
 - A pure python compiler makes TorchInductor easy to understand and hackable by users. Generates Triton and C++.

- **Breadth First**
 - Early focus on supporting a wide variety of operators, hardware, and optimization. A general purpose compiler, that can scale.
TorchInductor Technologies

- Define-By-Run Loop-Level IR
 - Direct use of Python functions in IR definitions allows for rapidly defining lowering with little boilerplate.

- Dynamic Shapes & Strides
 - Uses SymPy to reason about shapes, indexing, and managing guards. Symbolic shapes from the ground up.

- Reuse State-Of-The-Art Languages
 - Generates output code in languages popular for writing handwritten kernels:
 - Triton for GPUs
 - C++/OpenMP for CPUs
What is Triton?

A new programming language for highly performant GPU kernels
- Higher level than CUDA
- Lower level than preexisting DSLs
- Allows non-experts to write fast custom kernels

Users define tensors (i.e., blocks of data) in SRAM, and modify them using torch-like operators

PYTHONIC INTERFACE

Like in Numba, kernels are defined in Python using the triton.jit decorator

LOW-LEVEL MEMORY CONTROL

Users can construct tensors of pointers and dereference them element-wise

Optimizing Compiler

Blocked program representation allows the Triton compiler to generate extremely efficient code

https://triton-lang.org
https://github.com/openai/triton
by Philippe Tillet @ OpenAI

Triton: an intermediate language and compiler for tiled neural network computations

Philippe Tillet, H. T. Kung, David Cox

In Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages (MAPL 2019)

https://doi.org/10.1145/3315508.3329973
<table>
<thead>
<tr>
<th>TORCHINDUCTOR COMPILER STACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOT Autograd / PrimTorch</td>
</tr>
<tr>
<td>Decomposes into smaller operator set</td>
</tr>
<tr>
<td>Capture forwards + backwards</td>
</tr>
<tr>
<td>Some inductor specific decomp included in this step</td>
</tr>
<tr>
<td>Inductor Graph Lowerings</td>
</tr>
<tr>
<td>Remove views, broadcasting, and simplify indexing</td>
</tr>
<tr>
<td>Rematerialize vs reuse decisions</td>
</tr>
<tr>
<td>Layout tuning and optimization</td>
</tr>
<tr>
<td>Loop order</td>
</tr>
<tr>
<td>Inductor Scheduling</td>
</tr>
<tr>
<td>Horizontal / vertical fusion decisions</td>
</tr>
<tr>
<td>Reduction fusions</td>
</tr>
<tr>
<td>Tiling</td>
</tr>
<tr>
<td>Memory planning and buffer reuse</td>
</tr>
<tr>
<td>In-place memory buffers</td>
</tr>
<tr>
<td>Autotuning / kernel selection</td>
</tr>
<tr>
<td>Wrapper Codegen</td>
</tr>
<tr>
<td>Outer code that calls kernels and allocates memory</td>
</tr>
<tr>
<td>(Replaces interpreter)</td>
</tr>
<tr>
<td>Backend Codegen</td>
</tr>
<tr>
<td>Triton</td>
</tr>
<tr>
<td>C++</td>
</tr>
</tbody>
</table>
TorchInductor Example

<table>
<thead>
<tr>
<th>Input Code</th>
<th>ATen FX Graph</th>
<th>Define-by-run IR</th>
<th>Scheduling/Fusion</th>
<th>Output Triton</th>
<th>Output Wrapper</th>
</tr>
</thead>
</table>

```python
import torch

@torch.compile(dynamic=True)
def toy_example(x):
    y = x.sin()
    z = y.cos()
    return y, z

toy_example(torch.randn([8192, 1024], device="cuda"))
```

Run with:
```bash
TORCH_COMPILE_DEBUG=1 python inductor_demo.py
```
def forward(self, arg0_1: f32[s0, s1]):
 # File: inductor_demo.py:6, code: y = x.sin()
 sin: f32[s0, s1] = torch.ops.aten.sin.default(arg0_1)

 # File: inductor_demo.py:7, code: z = y.cos()
 cos: f32[s0, s1] = torch.ops.aten.cos.default(sin)
 return (sin, cos)
TorchInductor Example

<table>
<thead>
<tr>
<th>Input Code</th>
<th>ATen FX Graph</th>
<th>Define-by-run IR</th>
<th>Scheduling/Fusion</th>
<th>Output Triton</th>
<th>Output Wrapper</th>
</tr>
</thead>
</table>

```python
def inner_fn_buf0(index):
    i0, i1 = index
    tmp0 = ops.load(arg0_1, i1 + i0 * s1)
    tmp1 = ops.sin(tmp0)
    return tmp1

def inner_fn_buf1(index):
    i0, i1 = index
    tmp0 = ops.load(buf0, i1 + i0 * s1)
    tmp1 = ops.cos(tmp0)
    return tmp1
```

```python
buf0_ir = TensorBox(StorageBox(ComputedBuffer(
    name='buf0',
    layout=FixedLayout('cuda', torch.float32,
        size=[s0, s1], stride=[s1, 1]),
    data=Pointwise(inner_fn=inner_fn_buf0, ranges=[s0, s1], ...))))

buf1_ir = TensorBox(StorageBox(ComputedBuffer(
    name='buf1',
    layout=FixedLayout('cuda', torch.float32,
        size=[s0, s1], stride=[s1, 1]),
    data=Pointwise(inner_fn=inner_fn_buf1, ranges=[s0, s1], ...))))
```
Scheduler.can_fuse(buf0, buf1):
True

Scheduler.score_fusion(buf0, buf1):
(True, True, 33554432, -1)

- True/True is category of fusion (pointwise/pointwise)
- 33554432 is estimated memory bandwidth saved by fusion: \(8192 \times 1024 \times 4\)
- -1 is distance in graph
@triton.jit
def triton__0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = tl.sin(tmp0)
tmp2 = tl.cos(tmp1)
 tl.store(out_ptr0 + (x0 + tl.zeros([XBLOCK], tl.int32)), tmp1, None)
 tl.store(out_ptr1 + (x0 + tl.zeros([XBLOCK], tl.int32)), tmp2, None)
def call(args):
 arg0_1, = args
 args.clear()
 arg0_1_size = arg0_1.size()
 s0 = arg0_1_size[0]
 s1 = arg0_1_size[1]
 buf0 = empty_strided((s0, s1), (s1, 1), device='cuda', dtype=torch.float32)
 buf1 = empty_strided((s0, s1), (s1, 1), device='cuda', dtype=torch.float32)
 triton_0_xnumel = s0*s1
 triton_0.run(arg0_1, buf0, buf1, triton_0_xnumel, grid=grid(triton_0_xnumel))
 return (buf0, buf1,)
TorchInductor Example: C++ Output

Change device='cuda' to device='cpu'

```c++
extern "C" void kernel(const float* __restrict__ in_ptr0,
                        float* __restrict__ out_ptr0,
                        float* __restrict__ out_ptr1,
                        const long ks0,
                        const long ks1)
{
    #pragma omp parallel num_threads(8)
    {
        #pragma omp for
        for(long i0=0; i0<((ks0*ks1) / 16); i0+=1)
        {
            auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + 16*i0);
            auto tmp1 = tmp0.sin();
            auto tmp2 = tmp1.cos();
            tmp1.store(out_ptr0 + 16*i0);
            tmp2.store(out_ptr1 + 16*i0);
        }
        #pragma omp for simd simdlen(8)
        for(long i0=16*(((ks0*ks1) / 16)); i0<ks0*ks1; i0+=1)
        {
            auto tmp0 = in_ptr0[i0];
            auto tmp1 = std::sin(tmp0);
            auto tmp2 = std::cos(tmp1);
            out_ptr0[i0] = tmp1;
            out_ptr1[i0] = tmp2;
        }
    }
}
```
GPU RESULTS

<table>
<thead>
<tr>
<th></th>
<th>TorchBench</th>
<th>Models from HuggingFace</th>
<th>Models from TIMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP Training</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speedup vs Eager+AMP</td>
<td>1.68 gmean speedup</td>
<td>1.89 gmean speedup</td>
<td>1.66 gmean speedup</td>
</tr>
<tr>
<td>Passing models count</td>
<td>64 of 64 models</td>
<td>45 of 46 models</td>
<td>60 of 61 models</td>
</tr>
<tr>
<td>BFloat16 Inference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speedup vs Eager+AMP</td>
<td>1.67 gmean speedup</td>
<td>1.91x gmean speedup</td>
<td>1.78x gmean speedup</td>
</tr>
<tr>
<td>Passing models count</td>
<td>64 of 72 models</td>
<td>46 of 46 models</td>
<td>61 of 61 models</td>
</tr>
</tbody>
</table>

- NVIDIA A100 GPU
- TorchBench: github.com/pytorch/benchmark
- HuggingFace: github.com/huggingface/transformers
- TIMM: github.com/rwightman/pytorch-image-models
- Note: using mode="reduce-overhead"
PT2 For Hardware Backends
Extension Points For torch.compile

1. Pre-Grad Fx Graph
2. Post-grad, functionalized
 a. ONNX has integration here
3. Torchinductor
 a. Recent PR merged adds new extensibility point for 3rd party backend
4. Triton - recommended path
 a. Intel XPU, AMD GPUs have integrated this way
 b. Takes advantage of triton templates for compute heavy operators
PT2 For Pytorch Eager

1. Primtorch/PyTorch Decompositions
 a. Vastly reduce the 2000+ PyTorch Operators
 i. Inductor has ~140 unique lowerings
 b. Explicitly model type promotion and broadcasting behavior

2. We are looking into reusing Triton codegen for eager kernels
 a. Write a compiler backend, get eager support
PT2 For Non-Python Deployment

1. torch.export
 a. Full model graph capture

2. aot_inductor
 a. Export inductor runtime to c++

3. ExecuTorch
 a. Newly released runtime targeting edge devices
Stay in Touch

1. Follow https://dev-discuss.pytorch.org/ for updates
2. PyTorch Slack
3. Github
4. email eellison (at) meta.com