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Outline

➢Why Quantization?

➢Basic Concepts of Quantization

➢Advanced Concepts of Quantization
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Single-Chip GPU Inference Performance
1000X in 10 years!

3Slide Credit: Bill Dally Keynote at Berkeley Deep Drive, Deep Learning and Autonomous Vehicles, 2023.

Gains from 

• Number representation

– FP32, FP16, Int8, FP8

• Complex instructions

– DP4, HMMA, IMMA

• Process

– 28nm, 16nm, 7nm, 5nm



Memory Wall: Main Bottleneck is Memory Bandwidth 

4Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, Kurt Keutzer, AI and Memory Wall, Riselab Medium Blogpost, 2021.

Memory is developing much slower than computes

Memory is becoming increasingly an important 
bottleneck!

✅ Quantization is quite effective at reducing model 
size, reducing memory operations significantly

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


The dominant contributor to runtime is the time for memory bandwidth not compute
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Memory Wall for LLM Inference!

Breakdown of LLaMA 7B model with Seq Len of 128 and batch of 1

S. Kim*, C. Hooper*, A. Gholami*, Z. Dong, X. Li, S. Sheng, M. 

Mahoney, K. Keutzer, SqueezeLLM: Dense-and-Sparse Quantization, 

arxiv: :2306.07629.



Quantization enables low precision arithmetic
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• Lower precision weights mean less energy per Multiply-Accumulate

• Also enables putting more MAC units per unit of silicon

✅ Quantization is great for compute bound inference problems as it allows us to utilize 

lower precision ALUs



Energy Consumption

7“computing’s Energy Problem, M. Horowitz, ISSCC, 2014 (Numbers are rough approximations for 45nm)

Slide: Courtesy of Prof. Shao

✅ Reducing memory movement directly impacts power consumption



Outline

➢ Basic Concepts of Quantization

– Uniform vs Non-Uniform Quantization

– Symmetric vs Asymmetric Quantization

– Quantization Granularity: Layer-wise vs Channel-wise

– Dynamic vs Static Quantization

– Post Training Quantization vs Quantization Aware Training
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Quantized Inference
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Quantization:
Workhorse for Efficient Inference
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• Uniform quantization is a linear mapping from floating point values to quantized integer values
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Quantization:
Workhorse for Efficient Inference
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-5.64 0.68 1.43
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Using uniform, symmetric quantization method
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Uniform vs Non-Uniform Quantization

• Uniform Quantization: Split range of weight values evenly

• Non-uniform quantization: No constraint on how the weight values are quantized
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Uniform vs Non-Uniform Quantization

Uniform Quantization Non-Uniform Quantization

Easy to utilize reduced precision ALUs Typically requires inference arithmetic at higher 
precision (for example FP16)

Just requires loading scale values and Zero point Requires a Look Up Table

Higher quantization error Lower quantization error

Easy to implement Typically more involved to implement/quantize
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Asymmetric vs Symmetric Quantization
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Asymmetric Quantization Symmetric Quantization

Asymmetric Quantization Symmetric Quantization

Suitable for cases where min/max values are very 
different (e.g. activations after ReLu)

Suitable when min/max values are similar/symmetric 
around zero point

Typically used for activation quantization Typically used for weight quantization

Requires storing a zero point (Z) No zero point required (simpler to implement)
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Layer-Wise vs Channel-Wise Quantization
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Static vs Dynamic Quantization
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0

0

𝛼 = −5.64 𝛽 =5.64
𝑟

𝑄
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• How do we choose the range [𝛽, 𝛼]?

– For weights, we know the values statically, since weights are fixed during 

inference

– But what about activations? We can either use static or dynamic 

quantization:

• Static Quantization: Choose pre-determined static range for activations 

independent of input

– Very fast, low overhead, but typically not accurate since each input can 

have a different range

• Dynamic Quantization: Determine range for each activation separately during 

the runtime

– Typically very slow due to the cost of computing mix/max or percentile

– But very accurate as it exactly detects the correct range for quantization

𝑆 =
𝛽 − 𝛼

2^𝐵 − 1



Model Quantization Methods

The quantization schemes we talked about so far assume that we have the model parameters given to us. There 

are generally two approaches for getting these values:

• Post Training Quantization (aka training-free quantization):

– Typically just uses the weights after normal training is finished without any extra training.

– Variants of this approach exist where a small amount of calibration data is used to determine the network 

behaviour (e.g. to compute range of activations, adjusting normalization constants, and possibly even 

adjusting the weights without training).
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Model Quantization Methods

The quantization schemes we talked about so far assume that we have the model parameters given to us. There 

are generally two approaches for getting these values:

• Quantization Aware Training

– In this approach, training is performed to adjust the weights by backpropagating the loss through the 

quantization operators.

– Performing backprop requires simulated quantization along with Straight Through Estimator for rounding 

functions
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Quantization Aware Training
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Post Training Quantization (PTQ)
vs Quantization Aware Training (QAT)
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Post Training Quantization Quantization Aware Training

Usually very fast (1-3 min) Slow (may require hundreds of epochs)

No re-training required Model must be retrained

Less accurate at low precisions Typically more accurate than PTQ



Review

➢ Basic Concepts of Quantization

– Uniform vs Non-Uniform Quantization

– Symmetric vs Asymmetric Quantization

– Quantization Granularity: Layer-wise vs Channel-wise

– Dynamic vs Static Quantization

– Post Training Quantization vs Quantization Aware Training
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Outline

➢ Basic Concepts of Quantization

➢ Advanced Concepts of Quantization

– Dense and Sparse Quantization

– Mixed-Precision Quantization
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New LLMs have Significant Outliers
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• Weight distribution analysis of LLaMA-7B Model

– Range of the weight values in the Output (MHA) and Down (FFN) projection layers 

– Around 99.99% of the values are in the 10-20% of the overall range

• Outliers over-exaggerate the quantization range

0
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Dense-and-Sparse Quantization
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• Decompose a matrix into a dense matrix and a sparse matrix

𝑊 = 𝐷 + 𝑆

S. Kim*, C. Hooper*, A. Gholami*, Z. Dong, X. Li, S. Sheng, M. Mahoney, K. Keutzer, SqueezeLLM: Dense-and-Sparse Quantization, arxiv: :2306.07629.



Dense-and-Sparse Decomposition

• Decompose a matrix into a dense matrix and a sparse matrix

25

𝑊𝑥 = 𝐷 + 𝑆 𝑥 = 𝐷𝑥 + 𝑆𝑥 ≈ 𝑄𝑥 + 𝑆𝑥

Dense matrix: reduced range 

→ smaller quantization error
Sparse matrix: ~0.1% outliers

Sparse matrix representation using the compressed row storage (CSR) 

format

𝐷

𝑆



Dense-and-Sparse Decomposition

• Decompose a matrix into a dense matrix and a sparse matrix
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𝑊𝑥 = 𝐷 + 𝑆 𝑥 = 𝐷𝑥 + 𝑆𝑥 ≈ 𝑄𝑥 + 𝑆𝑥

Dense matrix: reduced range 

→ smaller quantization error
Sparse matrix: ~0.1% outliers

FP16 dense matrix multiplication

After dequantization

Sparse matrix multiplication

(e.g. CuSparse)

Sparse matrix representation using the compressed row storage (CSR) 

format

S. Kim*, C. Hooper*, A. Gholami*, Z. Dong, X. Li, S. 

Sheng, M. Mahoney, K. Keutzer, SqueezeLLM: Dense-

and-Sparse Quantization, arxiv: :2306.07629.



Outline

➢ Basic Concepts of Quantization

➢ Advanced Concepts of Quantization

– Dense and Sparse Quantization

– Mixed-Precision Quantization
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Mixed Precision Quantization
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4-bit

8-bit

4-bit

8-bit

4-bit

8-bit

4-bit

8-bit

Uniform low precision does not work as it can significantly degrade accuracy

➢ Use mixed-precision  ==> How to determine mixed precision? Exponential search space

How can we perform low precision quantization with minimal generalization loss?



Flat Loss Landscape → Low Bit Precision
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• Uniform quantization is a linear mapping from floating point values to quantized integer values

Floating Point values

4-bit Quantization

0 1 14 15

Flat Loss Landscape

…



Sharp Loss Landscape → High Bit Precision Needed

30

• Uniform quantization is a linear mapping from floating point values to quantized integer values

Floating Point values

8-bit Quantization

Sharp Loss Landscape

0 1 254 255

…



Hessian Aware Quantization
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This is somewhat similar to the Jenga 

game. We only remove blocks that are 

not sensitive. 

➢ Only use low precision quantization 

for insensitive parameters (flat loss 

landscape)

➢ Use high precision quantization for 

sensitive parameters (sharp loss 

landscape)

This sensitivity can be calculated through 

Hessian which quantifies the relative 

sharpness/flatness of the loss landscape.

Image from UniversityCoop

Dong Z, Yao Z,  Arfeen D, Gholami A, Mahoney MW, Keutzer K. Hawq-v2: Hessian aware trace-weighted quantization of neural networks. NeurIPS, 2020.

Yu S*, Gholami A*, Yao Z*, Dong Z*, Mahoney MW, Keutzer K. Hessian-Aware Pruning and Optimal Neural Implant. WACV, 2022.

https://www.universitycoop.com/media/blog/1908%20Tailgate/jenga%20(2).jpg


Using Hessian to Guide Choice of Bit Precision Layer by Layer

4-bit

8-bit

4-bit
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Z. Yao*, Z. Dong*, Z. Zheng*, A. Gholami*, E. Tan, J. Li, L. Yuan, Q. Huang, Y. Wang, M. W. Mahoney, K. Keutzer, HAWQ-V3: Dyadic Neural Network 

Quantization in Mixed Precision, ICML, 2021. 

Dong Z, Yao Z, Arfeen D, Gholami A, Mahoney MW, Keutzer K. Hawq-V2: Hessian aware trace-weighted quantization of neural networks. NeurIPS, 2020.

Dong Z*, Yao Z*, Gholami A*, Mahoney MW, Keutzer K. HAWQ: Hessian AWare Quantization of neural networks with mixed-precision. ICCV, 2019.

Training Loss
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Full Stack Approach for Efficient Conversational AI
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Data

NN Architecture

NN Compression

HW

• HAWQ-V3, I-BERT: ICML’21 (Oral)
• Optimal Neural Implant: WACV’21
• Zero-shot/integer-only ASR: ICASSP’22
• Learned Token Pruning: KDD’22
• Post-training Pruning: NeurIPS’22
• SqueezeLLM: This Work

• PowerNorm: ICML’20
• SqueezeFormer: NeurIPS’22
• BiLD: In Review

• SqueezeNext: CVPR’18
• Genisys: ISCA’23 Workshop



Thanks for Listening

Please reach out if you had any feedback/questions:

amirgh@berkeley.edu

Further Reading:

- Gholami A, Kim S, Dong Z, Yao Z, Mahoney MW, Keutzer K. A survey of quantization 

methods for efficient neural network inference. In Low-Power Computer Vision 2022.

- Kim S, Hooper C, Wattanawong T, Kang M, Yan R, Genc H, Dinh G, Huang Q, Keutzer K, 

Mahoney MW, Shao YS. Full stack optimization of transformer inference: a survey. 

Workshop on Architecture and System Support for Transformer Models (ASSYST) at ISCA 

2023.
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