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We are leading the
realization of the hybrid AI

Convergence of:

Wireless connectivity

Efficient computing

Distributed AI

Unlocking the data

that will fuel our digital

future and generative AI

To scale, the center of
gravity of AI processing is

moving to the edge

Central cloud Edge cloud On device

Hybrid AI
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Cost

Energy

Reliability, latency, 
& performance

Privacy & security

Personalization
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Choose env.,

config.,

model and

framework

Does the 

model meet 

performance 

metrics

Train,

Finetune

model

Add custom

layers and/or

fix errors

Qualcomm® Neural Processing SDK

and Qualcomm® AI Engine direct

Converter and Quantizer

Custom Ops

LLVM (C/C++)

TVM (Python)

Data

Scientist

ML Training

Engineer

Environment Training Compilation

Formats 

supported

Accuracy

Evaluation

Is the 

model’s 

accuracy 

acceptabl

e?

Debug and

fix errors

Accuracy 

analysis

Model

Compilation/

Runner

Does the 

model 

compile?

Is the 

model’s 

output & 

latency 

acceptable?

Profile

model Perf

Did that

work?

Use advanced

optimization

techniques

Optimizations

ML Inference

Engineer

Integrate

model into App

or pipeline

Deploy

App

App

Developer

DevOps

Engineer

Integration Deployment

NAS

QAT

Qualcomm® Hexagon™ 

Processor QeMU

Simulator

Simulation 

environment for 

bit accurate 

validation

Hexagon VS Code

Improved IDE for 

Debugging, Profiling 

and Trace Analysis

Performance Analyzer

Hexagon Processor

profiler that provides 

guidance on expected 

performance.

Accuracy Debugger

Per layer output 

analysis for backends.

Accuracy Evaluator

Automated 

quantization using 

all quantization 

options for best 

accuracy

Quantization Checker

Detect potential 

accuracy issues by 

flagging suboptimal 

quantization 

encodings

Architecture 

Checker

Automated model 

topology and 

architecture 

analysis

Qualcomm 

AI Studio®
AI model

Efficiency

Toolkit (AIMET)

AIMET is a product of Qualcomm Innovation Center, Inc
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI
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Optimization Goals
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movement
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI: Transformers
Optimization Goals

1. Maximize parallelism

2. Minimize data 

movement

HVX

(~70%)

HMX

(~30%)

Transformer 

Architecture

Hexagon Processor

Scalar Memory Processing

MatrixVector

TCM

HMX 
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Scalar 

Threads
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Engine

HMX 
FP16
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Neural Networks: A mundane pile of linear algebra 

Optimizing Hardware for AI: Super Resolution
Optimization Goals

1. Maximize parallelism

2. Minimize data 

movement

HVX

(~30%)

HMX

(~90%)

Super Resolution 

Architecture

Hexagon Processor

Scalar Memory Processing

MatrixVector

TCM

HMX 
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Threads
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HMX 
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ABPN, SESR, XLSR, Q-
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Hexagon Processor: Execution of ML use cases
Optimization Goals

1. Maximize parallelism

2. Minimize data 

movement
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Pre-

Processing

Pre-

Processing
ML

Post-

Processing

Post-

Processing
ML

HVX HVX HVXHVX, HMX

Mono

RGB

Hexagon Processor

Scalar Memory Processing

HMXHVX

VTCM Matrix 

Engine

Thread 1

L2$
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Engine

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Vector 1

Vector 2

Vector 3

Vector 4

Hexagon Processor: Execution of end-to-end use 
cases
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Hexagon Processor

Memory Processing

HMX

VTCM Matrix 

Engine

L2$
DMA 

Engine

Hexagon Processor: Concurrency Model
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VTCM Partitioning between             

+

Hexagon Processor

Memory Processing

HMX

Matrix 

Engine
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DMA 

Engine

Hexagon Processor: Concurrency Model
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AI Model Compilation: Steps
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n
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Common  Graph 

optimizations

Converter

Quantizer

Framework optimizations
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AI Model Compilation: Steps
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Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.
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optimizations
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Quantizer

Framework optimizations
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AI Model Compilation: Steps
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Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.

Framework graph is translated to the IR Graph

Common  Graph 

optimizations

Converter

Quantizer

Framework optimizations
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AI Model Compilation: Steps
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Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various 

config. parameters

Common  Graph 

optimizations

Converter

Quantizer

Framework optimizations
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AI Model Compilation: Steps
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Framework graph is translated to the IR Graph

If required, graph can be quantized according to various 

config. parameters

Framework agnostic graph optimizations are applied such as 

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.

Common  Graph 

optimizations

Converter

Quantizer

Framework optimizations
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AI Model Compilation: Steps
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Framework graph is translated to the IR Graph

If required, graph can be quantized according to various 

config. parameters

Framework agnostic graph optimizations are applied such as 

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.
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Naive sequencers executed Nets “Layer-by-Layer”, sequentially. 

Sometimes 1-3 layers can be aggregated (e.g., conv followed by 

RELU). “Layer by Layer” leaves performance and memory 

bandwidth on the table:
• If we exploit concurrencies 

and simultaneously operate on 

data from multiple layers, 

execution finishes faster

• A layer’s output, once 

consumed by next layer, is 

discardable. This saves DDR 

bandwidth, but TCM must be 

large enough, or data unit 

small enough, to store 

intermediate output

Sequence 
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Scheduler
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HW 
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Simplify graph by backend aware op fusion, const-prop, common 

sub expressions, etc.

AI Model Compilation: Steps
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Framework graph is translated to the IR Graph

If required, graph can be quantized according to various 

config. parameters

Framework agnostic graph optimizations are applied such as 

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.
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Simplify graph by backend aware op fusion, const-prop, common 

sub expressions, etc.

AI Model Compilation: Steps
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If required, graph can be quantized according to various 

config. parameters

Framework agnostic graph optimizations are applied such as 

batchnorm folding
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etc.

Break neural network layers into smaller data piece / 

execution chunks (tiles)
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Simplify graph by backend aware op fusion, const-prop, common 

sub expressions, etc.

AI Model Compilation: Steps
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Framework graph is translated to the IR Graph

If required, graph can be quantized according to various 

config. parameters

Framework agnostic graph optimizations are applied such as 

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.

Break neural network layers into smaller data piece / 

execution chunks (tiles)

Scheduler and Sequencer tools dictate order of tile execution 

to get best performance (completion time) & reduce DDR BW and 

power. To handle variety of network architectures, different 

types of sequencers are created. Each Sequencer is composed of 

cooperating algos & heuristics where some can be non-linear –

small changes in networks give different results
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Simplify graph by backend aware op fusion, const-prop, common 

sub expressions, etc.

AI Model Compilation: Steps
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Framework graph is translated to the IR Graph

If required, graph can be quantized according to various 

config. parameters

Framework agnostic graph optimizations are applied such as 

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.

Break neural network layers into smaller data piece / 

execution chunks (tiles)

To minimize DDR Bandwidth pressure, utilize locality between 

successive layers to reduce DDR BW. Consider three sequential 

layers:

• Output of layer n is the input of layer (n+1)

• Output of layer (n+1) is the input of layer (n+2)

• Output of Layer (n+2) is divided into four portions

Each portion results in a separate into computation ‘cones’. 

Intermediate results within a cone are stored in local TCM –

do not consume DDR bandwidth.
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Simplify graph by backend aware op fusion, const-prop, common 

sub expressions, etc.

AI Model Compilation: Steps
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Framework graph is translated to the IR Graph

If required, graph can be quantized according to various 

config. parameters

Framework agnostic graph optimizations are applied such as 

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.

Break neural network layers into smaller data piece / 

execution chunks (tiles)

To minimize DDR Bandwidth pressure, utilize locality between 

successive layers to reduce DDR BW. Consider three sequential 

layers:

• Output of layer n is the input of layer (n+1)

• Output of layer (n+1) is the input of layer (n+2)

• Output of Layer (n+2) is divided into four portions

Each portion results in a separate into computation ‘cones’. 

Intermediate results within a cone are stored in local TCM –

do not consume DDR bandwidth.
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Simplify graph by backend aware op fusion, const-prop, common 

sub expressions, etc.

AI Model Compilation: Steps
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Framework graph is translated to the IR Graph

If required, graph can be quantized according to various 

config. parameters

Framework agnostic graph optimizations are applied such as 

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.

Break neural network layers into smaller data piece / 

execution chunks (tiles)

Define order of execution for each data piece and data 

movement

Sequence 
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Simplify graph by backend aware op fusion, const-prop, common 

sub expressions, etc.

AI Model Compilation: Steps
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Framework graph is translated to the IR Graph

If required, graph can be quantized according to various 

config. parameters

Framework agnostic graph optimizations are applied such as 

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.

Break neural network layers into smaller data piece / 

execution chunks (tiles)

Define order of execution for each data piece and data 

movement

Define parallel execution on engines for Performance/BW
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Break neural network into smaller data pieces

Define order of execution for each data piece and data 

movement

Define parallel execution on engines for Performance/BW

Generate the optimized list of functions to run on hardware

Simplify graph by op fusion, const-prop, common sub 

expressions, etc.

AI Model Compilation: Steps
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Framework graph is translated to the IR Graph

If required, graph can be quantized according to various 

config. parameters

Framework agnostic graph optimizations are applied such as 

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding, 

etc.
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What order do I execute each 

operation? 

All orders must follow a 

topological sort.

CONV_A_0 CONV_A_1

CONV_B_0 CONV_B_1

POOL_0 POOL_1

WT_B

WT_A

ACT_0 ACT_1

CONV_A_0 CONV_A_1

CONV_B_0 CONV_B_1

POOL_0 POOL_1

WT_B

WT_A

ACT_0 ACT_1

CONV_A_0 CONV_A_1

CONV_B_0 CONV_B_1

POOL_0 POOL_1

WT_B

WT_A

ACT_0 ACT_1

CONV_A_0 CONV_A_1

CONV_B_0 CONV_B_1

POOL_0 POOL_1

WT_B

WT_A

ACT_0 ACT_1

Very simple network for 

illustration with only 

10 operations

1102 Valid topological sorts for this simple 

network of 10 operations!

Red lines show 3 potential valid topological 

sorts
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AI Model Performance: inf/sec
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AI Model Performance: inf/sec per watt
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