Qualcomn

ML Inference at the
Edge

Felix Baum

Senior Directora. Product Management
Rualcomm Technologies. Inc.

adqualcomm

Snapdragon and Qualcomm branded products e products of Qualcomm Technologies- Inc. and/fr its
subsidiaries.




To scale, the center of
gravity of Al processing is
moving to the edge

Cost
()=/ Y N\
r X~ Energy
[\ 9 \ Reliability, latency,
f-\L J’% & performance
N
i I U Privacy & security
Personalization
-
Central cloud Edge cloud On device
€ Hybrid Al >
Convergence of:
We are leading the Wireless connectivity EE TG i CEiE
. . . " . that will fuel our digital
realization of the hybrid Al Efficient computing future and generative Al
Distributed Al




Data ML Training ML Inference App DevOps
Scientist Engineer Engineer Developer EngiAneer'
A A A
[ Y \ \
Environment Training Compilation Accuracy Optimizations Integration Deployment
analysis A
f \

hoose env.-
config.a
model and
framework

Does the
model meet
performance

metrics

Traina
Finetune
model

Model
Compilation/
Runner

Does the
model
compile?

Add custom
layers and/o
fix errors

Formats
supported

ualcomm® Neural Processing SDK

and Qualcomm® AI Engine direct

Converter and Quantizer

Custom Ops
LLVM (C/C++)
TVM (Python)

model's
accuracy
acceptabl

Accuracy
Evaluation

Debug and
fix errors

model's
output &
latency

Profile
model Perf

Did that
work?

Use advanced
optimization
techniques

Q Integrate
odel into Ap
or pipeline

9y

Qualcomm
snapdragon

with Al Engine

Qualcomm
Al Stack

Architecture
Checker

Automated model
topology and
architecture

AI model
Efficiency

Quantization Checker

Detect potential

accuracy issues

flagging suboptimal

guantization

4. 1 T 3 G +
e commt—r o vatiof—centcter

Accuracy Evaluator

Automated
guantization using
all quantization
options for best

by

T
€

Toolkit C(AIMET)

Accuracy Debugger

Per layer output
analysis for backends-.

Performance Analyzer

Hexagon Processor
profiler that provides

guidance on expected

performance.

Hexagon VI Code

Improved IDE for
Debugging. Profiling
and Trace Analysis

dualcomm
AI Studio®

@ualcomm® Hexagon™
Processor QeMU
Simulator

Simulation
environment for
bit accurate

3 o + £
IS—a—pProauct—ot




Optimizing Hardware for AI

Neural Networks: A mundane pile of linear algebra

1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order

Tensor) Tensor) Tensor) Tensor)




Optimizing Hardware for AI

Neural Networks:

A mundane pile of linear algebra

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
Pooling Conv Pooling
2 X 2 5 x 5 x 2 X 2 Fe Fe
A Ly A
4 AY4 \/_)H 4 \/_)H
Setup

28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 4 x 4 x bu 1024 10
1 32 32 by




Optimizing Hardware for AI

Neural Networks: A mundane pile of linear algebra

Hexagon Processor

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)

Setup

28 x 28 x 24 x 24 x 12 x 12 x
1 32 32

1024 10




Optimizing Hardware for AI

Neural Networks: A mundane pile of linear algebra

Hexagon Processor

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order Seal
calar
Tensor) Tensor) Tensor) Tensor) Threads \“
x. FC FC
A
N A
Setup
28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 1024 10
1 32 32 LY
Scalar

Processor




Optimizing Hardware for AI

Neural Networks:

A mundane pile of linear algebra

1 1
| 1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
FC FC
A
N A
Setup
28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 1024 10
1 32 32 LY
Scalar Vector Vector
Processor Processor Processor

Hexagon

Scalar

Scalar
Threads \

Vector

Processor




Optimizing Hardware for AI

Neural Networks:

A mundane pile of linear algebra

I

I

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
FC FC
A
\f_JK_\
Setup
28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 1024 10
1 32 32 LY
Scalar Vector Tensor Vector
Processor Processor Processor Processor

Hexagon

Scalar

Scalar
Threads \

Vector

Processor

Matrix

HMX
INTS

HMX
FP1k




Optimizing Hardware for AI

Neural Networks:

A mundane pile of linear algebra

I

I

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
FC FC
A
N A
Setup
28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 1024 10
1 32 32 LY
Scalar Vector Tensor Vector
Processor Processor Processor Processor

Hexagon Processor

Scalar Memory Processing

Scalar
Threads \

Vector Matrix

10



Optimizing Hardware for AI

Neural Networks: A mundane pile of linear algebra Optimization Goals

L. Maximize parallelism

1 1
. ; Hexagon Processor
1 J .
Scalar Memory Processing
(Zero=-order (First-order (Second=-order (Third=-order Scal
calar
Tensor) Tensor) Tensor) Tensor) Threads “\
Pooling Conv Pooling
2 X 5 x 5 x 2 X e e
Ly
Vector Matrix
Setup
HVX m
2d x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 4 x 4 x by 1024 10
1 32 32 By
1§ J)
Y
Scalar Vector Tensor Vector .
Q‘arallellsm
Processor Processor Processor Processor

11



Optimizing Hardware for AI

Neural Networks: A mundane pile of linear algebra Optimization Goals

L. Maximize parallelism

2. Minimize data

1 1
. ; Hexagon Processor
1 J .

Scalar Memory Processing

(Zero-order (First-order (Second-order (Third=-order Scal
calar

Tensor) Tensor) Tensor) Tensor) Threads \“
Pooling Conv Pooling
2 x 2 5 x 5 x 2 x 2 c e
LYy
Vector Matrix
Setup
HV X m
cd x 28 x 24 x 24 x 12 x 12 x 8 x &8 x 4 x 4 x bu 1024 10
1 32 32 LU

Scalar Vector Tensor Vector DRAM
Processor Processor Processor Processor
e Memory

Access 12



Optimizing Hardware for AI

Neural Networks:

A mundane pile of linear algebra

I

I

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
FC FC
A
\f_JK_\
Setup
28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 1024 10
1 32 32 [
Scalar Vector Tensor Vector
Processor Processor Processor Processor

Optimization Goals
L. Maximize parallelism

2. Minimize data

Hexagon Processor

Scalar Memory Processing

Scalar
Threads \

Vector Matrix

13



Optimizing Hardware for AI: Transformers

Optimization Goals

Neural Networks: A mundane pile of linear algebra

L. Maximize parallelism

L L 2. Minimize data
. : Hexagon Processor
1 J
Scalar Memory Processing
Scalar Vector Matrix 3D Array
(Zero-order (First-order (Second-order (Third-order
Scalar DMA
Tensor) Tensor) Tensor) Tensor) Threads \ Engine =
feature map
_________ transfer _
/ Add & o o Vector Matrix
Setup Add & Nomn > Add & Nom ) HVX
(~707%) \
Feed
[ Forivard ] HVX
(_Add&Norm 4
Add & Norm Lx 3 AT ] Lx
Multi-Head A attention
Attention [ Multi-Head } 1_ tl'a_ngfgr_
Attention
| —
2
| — HMX
Scalar Embeddin (~304)
Processor @) (b)
Transformer

Architecture

14



Optimizing Hardware for AI: Super

Neural Networks:

mundane pile of linear algebra

1 1
I I
_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
HV X
=) (~30%)
“ﬁqgmi
Setu :i'
P ABPN- SESR- XLSR~ @- g
SRNet = : =
E
f nmﬁHdémn%_ HMX
m numberdlﬁnedmiemnivhyas (~90%)
————— + collapsible residual connection
-{p}» “pariiaF collapsible residual connection
Scalar -{ti}» “repeat-interleaving collapsible residual connection
Processor

Super Resolution
Architecture

Optimization Goals
L. Maximize parallelism

2. Minimize data

Hexagon Processor

Scalar Memory Processing

Scalar
Threads \

Vector

Matrix

15



Hexagon

Processor:

Execution of ML

I

I

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
FC FC
A
\f_Jk_\
Setup
28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 1024 10
1 32 32 [
Scalar Vector Tensor Vector
Processor Processor Processor Processor

Optimization Goals
L. Maximize parallelism

2. Minimize data

Hexagon Processor

Scalar Memory Processing

|||ii||| |||HHH|||
Engine

Scalar
Threads \

Vector Matrix

HMX
INTS
HMX
FP1k

16



nexXagull rroCessior. cLXxeCurlion O endag=vo=ernau uvoe
cases

HVX HVX. HMX HVX HVX

Hexagon Processor

Pre-
Processing

Post- Scalar Memory Processing
Processing Thread 1
Thread 2
\ J Thread 3
( ) Thread 4
Thread 5
Post- Thread bk

Mono ﬂ —

Pre-
Processing

res 01 —>

Processing

\ J Vector 1

Vector @2 Matrix

Engine

]
lar Vector Matrix 3D Array
(Zero-or der Tensor) (First-order Tensor) (Second-order Tensor) (Third-order Tensor)

Vector 3

: :
R -
;
e

i —— AT

T save o
Setup ﬁ B
Higa s
Py R “
Scalar Vector Tenso Vector
Processor Processar Processo Processor
\ ’

_____________________________

17



Hexagon Processor: (Concurrency Model

Implementi cv +
concurrency

HVX HVX. HMX HVX HVX

(c o)

Hexagon Processor

Pre-
Processing

Post- Scalar Memory Processing
Processing [ Thread 1

Thread 2

< < |_Thread 3 _|
( ) |_Thread 4|
|_Thread 5_|
Post-

Processing

Mono ﬂ —

Pre-
Processing

rRGE &1 —>
HVX
) . J Vector 1

Vector @2 Matrix

® Engine

Scalar Vector Matrix 3D Array
(Zero-order Tensor) (First-order Tensor) (Second-order Tensor) (Third-order Tensor)

Vector 3

Ll 1A

& J i \

_____________________________

18



Hexagon Processor:

Mono ﬂ —

res 81 —>

Concurrency Model

Scalar

[ Thread 1
Thread 2

Thread 3
Thread Y4

Thread 5
Thread bk

HVX

Vector 1

Vector 4

HVX HVX. HMX HVX HVX
(c N\
Pre- Post-
Processing ! Processing
l
1
1 .
1
1
1
l
1
Pre- ! > Post-
Processing : Processing
l
1
1
: \ )I
! l
1 \ ' 1
e N NN B
! a RE—
1 Scalar Vector Matrix 3D Array :
1 (Zero-order Tensor) (First-order Tensor) (Second-order Tensor) (Third-order Tensor) 1
C T = S~ !
! 1
! 1
1 Setup = —
| 7 [mmeas
Xx1 MxZexR 2xi2eR Bxdxed et 1
| :
! procemar rosesor Procems rocemo 1
! 1

_____________________________

VTCM Partitioning befldSlen| cv

+

Memory Processing

Partitio
n

HMX



AI Model Compilation: Steps

Framework optimizations

Converter

Auantizer

Conversion /

Common Graph
optimizations

20



AI Model Compilation: Steps

Conversion /

Framework optimizations

Converter

Auantizer

Common Graph
optimizations

Framework level

(Pytorch-. TF. etc) optimizations. op foldinga
etc.

21



AI Model Compilation: Steps

Conversion /

Framework optimizations

Converter

Auantizer

Common Graph
optimizations

Framework level

(Pytorch-. TF. etc) optimizations. op foldinga
etc.

Framework graph is translated to the IR Graph

22



AI Model Compilation: Steps

Framework level (Pytorch. TF. etc) optimizations. op foldinga
etc.

Framework optimizations

Converter Framework graph is translated to the IR Graph

If required. graph can be quantized according to various

RQuantizer :
config. parameters

Conversion /

Common Graph
optimizations




AI Model Compilation: Steps

Framework level (Pytorch. TF. etc) optimizations. op foldinga
etc.

Framework optimizations

Converter Framework graph is translated to the IR Graph

If required. graph can be quantized according to various

RQuantizer :
config. parameters

Conversion /

Common Graph Framework agnostic graph optimizations are applied such as
optimizations batchnorm folding




AI Model Compilation:

Conversion /

HW-aware ML Graph Compiler

Framework optimizations

Converter

Auantizer

Common Graph
optimizations

Backend
opt

Hu Tiling

Optimize
d
ML
Kernel
Library

Sequencer

Scheduler

Sequence
gen

Steps

Framework level (Pytorch. TF. etc) optimizations. op foldinga

etc.

Framework graph is translated to the IR Graph

graph can be quantized according to various
config. parameters

If required.

Framework agnostic graph optimizations are applied such as
batchnorm folding

Naive sequencers executed Nets “Layer-by-Layer”, sequentially.
Sometimes 1-3 layers can be aggregated (e.g., conv followed by
RELU) . “Layer by Layer” leaves performance and memory

ban%ﬂ%%$heg%ﬂﬁy%:%%%curren01es

and simultaneously operate on

data from multiple layers,

execution finishes faster

Tile ——=
. A layer’s output, once .
consumed by next layer, 1is
discardable. This saves DDR
bandwidth, but TCM must be
large enough,

small enough,

or data unit Rl = ,:-:r. R :I~ = —';7: =)
to store ‘ ' ' ' ‘
intermediate output




AI Model Compilation: Steps

Conversion /

HW-aware ML Graph Compiler

Framework opt

Converter

Auantizer

Common Graph
optimizations

Backend
opt

Hu Tiling

Optimize
d
ML
Kernel

Library Scheduler

Sequencer

Sequence
gen

Framework level (Pytorch. TF. etc) optimizations. op foldinga
etc.

Framework graph is translated to the IR Graph

If required. graph can be quantized according to various
config. parameters

Framework agnostic graph optimizations are applied such as
batchnorm folding

Simplify graph by backend aware op fusiona. const-prop-. common
sub expressions. etc-

26



AI Model Compilation: Steps

Conversion /

HW-aware ML Graph Compiler

Framework opt

Converter

Auantizer

Common Graph
optimizations

Backend
opt

Hu Tiling

Optimize
d
ML
Kernel

Library Scheduler

Sequencer

Sequence
gen

Framework level (Pytorch. TF. etc) optimizations. op foldinga
etc.

Framework graph is translated to the IR Graph

If required. graph can be quantized according to various
config. parameters

Framework agnostic graph optimizations are applied such as
batchnorm folding

Simplify graph by backend aware op fusiona. const-prop-. common
sub expressions. etc-

Break neural network layers into smaller data piece /
execution chunks (tiles)

27



AI Model Compilation: Steps

Conversion /

HW-aware ML Graph Compiler

Framework opt

Converter

Auantizer

Common Graph
optimizations

Backend
opt

Hu Tiling

Optimize
d
ML
Kernel
Library

Sequencer

Scheduler

Sequence
gen

Framework level (Pytorch. TF. etc) optimizations. op foldinga
etc.

Framework graph is translated to the IR Graph

If required. graph can be quantized according to various
config. parameters

Framework agnostic graph optimizations are applied such as
batchnorm folding

Simplify graph by backend aware op fusiona. const-prop-. common
sub expressions. etc-

Break neural network layers into smaller data piece /
execution chunks (tiles)

Scheduler and Sequencer tools dictate order of tile execution
to get best performance (completion time) & reduce DDR BW and
power. To handle variety of network architectures, different
types of sequencers are created. Each Sequencer is composed of
cooperating algos & heuristics where some can be non-linear -
small changes in networks give different results

28



AI Model Compilation: Steps

Conversion /

HW-aware ML Graph Compiler

Framework opt

Converter

Auantizer

Common Graph
optimizations

Backend
opt

Hu Tiling

Optimize
d
ML
Kernel
Library

Sequencer

Scheduler

Sequence
gen

Framework level (Pytorch. TF. etc) optimizations. op foldinga

etc.

Framework graph is translated to the IR Graph

If required. graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Simplify graph by backend aware op fusiona. const-prop-. common

sub expressionsa etc.

Break neural network layers into smaller data piece /

execution chunks (tiles)

To minimize DDR Bandwidth pressure, utilize locality between

successive layers to reduce DDR BW. Conside

layers:

* Output of layer n is the input of layer

* OQutput of layer (n+l) is the input of lay
* Output of Layer (n+2) is divided into fot
Each portion results in a separate into comy

Intermediate results within a cone are stor«

do not consume DDR bandwidth.

output of layer n

output of layer n+1

output of layer n+2

each layer produces the output required by
downstream consumer — this defines a ‘cone’

of data that is produced in one depth-first pass.
- - v}



AI Model Compilation: Steps

Conversion /

HW-aware ML Graph Compiler

Framework opt

Converter

Auantizer

Common Graph
optimizations

Backend
opt

Hu Tiling

Optimize
d
ML
Kernel
Library

Sequencer

Scheduler

Sequence
gen

Framework level (Pytorch. TF. etc) optimizations. op foldinga
etc.

Framework graph is translated to the IR Graph

If required. graph can be quantized according to various
config. parameters

Framework agnostic graph optimizations are applied such as
batchnorm folding

Simplify graph by backend aware op fusiona. const-prop-. common
sub expressions. etc-

Break neural network layers into smaller data piece /
execution chunks (tiles)

To minimize DDR Bandwidth pressure, utilize locality between
successive layers to reduce DDR BW. Conside:r o
layers:

* Output of layer n is the input of layer (
* OQutput of layer (n+l) is the input of lay
* Output of Layer (n+2) is divided into fou
FEach portion results in a separate into comg
Intermediate results within a cone are store
do not consume DDR bandwidth.

The next depth-first cone
produces the next portion
of layer n+2.

Some of the required data
was generated in the
previous cone. This
overlapping data remains in
TCM, so is not regenerated.



AI Model Compilation: Steps

Conversion /

HW-aware ML Graph Compiler

Framework opt

Converter

Auantizer

Common Graph
optimizations

Backend
opt

Hu Tiling

Optimize
d
ML
Kernel

Library Scheduler

Sequencer

Sequence
gen

Framework level (Pytorch. TF. etc) optimizations. op foldinga
etc.

Framework graph is translated to the IR Graph

If required. graph can be quantized according to various
config. parameters

Framework agnostic graph optimizations are applied such as
batchnorm folding

Simplify graph by backend aware op fusiona. const-prop-. common
sub expressions. etc-

Break neural network layers into smaller data piece /
execution chunks (tiles)

Define order of execution for each data piece and data
movement

31



AI Model Compilation: Steps

Conversion /

HW-aware ML Graph Compiler

Framework opt

Converter

Auantizer

Common

Graph

optimizations

HW
Optimize
d
ML
Kernel
Library

Backend
opt

Tiling

Sequencer

Scheduler

Sequence
gen

Framework level (Pytorch. TF. etc) optimizations. op foldinga
etc.

Framework graph is translated to the IR Graph

If required. graph can be quantized according to various
config. parameters

Framework agnostic graph optimizations are applied such as
batchnorm folding

Simplify graph by backend aware op fusiona. const-prop-. common
sub expressions. etc-

Break neural network layers into smaller data piece /
execution chunks (tiles)

Define order of execution for each data piece and data
movement

Define parallel execution on engines for Performance/BU

32



AI Model Compilation: Steps

Conversion /

d

Libr

HW-aware ML Graph Compiler

ML
Kernel

Framework opt

Converter

Auantizer

Common Graph
optimizations

Backend
opt

Hu Tiling
Optimize

Sequencer

ary Scheduler

Sequence
gen

Framework level (Pytorch. TF. etc) optimizations. op foldinga

etc.

Framework graph is translated to the IR Graph

If required. graph can be quantized according to various
config. parameters

Framework agnostic graph optimizations are applied such as
batchnorm folding

Simplify graph by op fusiona const-prop-. common sub
expressions. etc.

Break neural network into smaller data pieces

Define order of execution for each data piece and data
movement

Define parallel execution on engines for Performance/BU

Generate the optimized list of functions to run on hardware

33



AL 110Ul LOomMmpliiallOrne asQueEencer detverminegs oprimal
order

What order do I execute each
operation?

All orders must follow a
topological sort.

ACT 0 ACT 1

CONV_A_1

(ONV_B_1

WT_A

WT_B

Red lines show 3 potential valid topological
sorts

POOL_O POOL_1 . . . .
) 1102 Valid topological sorts for this simple
network of 10 operations!

Compiler algos trade-off DDR BW & Performance (latency)

Very simple network for
for each network.

illustration with only
10 operations 34



AI Model Compilation: Optimal Execution Order

Threads-. Run Ordersa. Timelines

/\ E3 ::gg:) Ruj\i:ifr:

Foregroun
d Process

Backgroun
d Process

q @ m—emm e e e e e e e e e e e e e e e e e e e e e e e e e e e = - - — —

Backgroun
d Process
=

Execution
Cycles



AI Model Compilation: Optimal Execution Order

Threads-. Run Ordersa. Timelines

/\ EB (: Run Order:

A B C

Foregroun
d Process

Backgroun
d Process

q @ ———— - -

Backgroun
d Process
=

Execution
Cycles

36



AI Model Compilation: Optimal Execution Order

Tiling

Foregroun
d Process

Backgroun
d Process

q @ ———— - -

Backgroun
d Process
=

o
27‘3"
WA @ Run Order:
) :7€E’ ABC

Execution
Cycles

37



AI Model Compilation: Optimal Execution Order

Tiling
-
@ Run Order:
Bar 53’ A Bl B2 ClL C2 C3 Cu
Foregroun

d Process

Backgroun
d Process

q @ ———— - -

Backgroun
d Process
=

Execution
Cycles

38



AI Model Compilation: Optimal Execution Order

(&)

Tiling

Foregroun
d Process

Backgroun
d Process

q @ ———— - -

Backgroun
d Process
=

Execution
Cycles

Run Order:

A BlL B2 €1 ¢2 €3 CH

39



AI Model Compilation: Optimal Execution Order

(&)

Scheduling

Foregroun
d Process

Backgroun
d Process

q @ ———— - -

Backgroun
d Process
=

Run Order:

A BlL B2 €1 ¢2 €3 CH

Execution
Cycles

5 6 7 'S

40



AI Model Compilation: Optimal Execution Order

Scheduling

Cl and (2 only
depend on Bl. so
they can be
reordered with B2-.

Run 0Ord

o1 oo
A Bl C1l C2)B2 (3 (X
N :

,_;,-/

Foregroun
d Process

Backgroun
d Process

q @ ———— - -

Backgroun
d Process
=

O 1 2 3 4 5 6 ? 'S
Execution

Cycles



AI Model Compilation: Optimal Execution Order

Optimal ordering

Cl and (2 only

depend on Bl. so
they can be

reordered with BZ.
Run Ord :

—

o
A Bl C1L (2,B2 (3 CH
N~ ﬁ,//

Foregroun
d Process

Backgroun
d Process

q @ ———— - -

Backgroun
d Process
=

0 1 2 3 4 5 6 ? €
Execution

Cycles



‘AI Model Performance: inf/sec

Snapdragon Competitor A Super resolution (RDN)

8 VS aa Snapdragon 8 Gen? — CEED
Gend Competitor B Competitor A TG
- Competitor B

Face recognition (FaceNet)

Snapdragon 8 Gen2 oD
Competitor A G

Competitor B

Bokeh (DeeplabV3i+)

Snapdragon 8 Gen?2 cEE—— D
Competitor A -

Competitor B

Natural language processing (MobileBERT)
Snapdragon 8 Gen2  CEEEEEEEEED
Competitor A a

Competitor B

*¥Qualcomm Technologies internal
test results

43



‘AI Model Performance: inf/sec per watt

Snapdragon Competitor A Super resolution (RDN)

8§ VS aE Snapdragon 8 Gen? cEEEEED
Geng Competitor B Competitor A a0

- Competitor B

Face recognition (FaceNet)
Snapdragon 8 GenZ «m— D
Competitor A -

Competitor B

Bokeh (DeeplabV3i+)

Snapdragon 8 Gen?  cE——D
Competitor A -

Competitor B

Natural language processing (MobileBERT)
Snapdragon 8 Gen? cEE——D
Competitor A [

Competitor B ”

*¥Qualcomm Technologies internal
test results



)
)

L VO

J

Qualcomm
Follow us on: in Y 006

For more information, visit us at:

qualcomm.com & qualcomm.com/blog

All data and information contained in or disclosed by this document is confidential

and proprietary information of Qualcomm Technologies, Inc. and/or its affiliated
companies and all rights therein are expressly reserved. By accepting this material the
recipient agrees that this material and the information contained therein will not be used,
copied, reproduced in whole or in part, nor its contents revealed in any manner to others
without the express written permission of Qualcomm Technologies, Inc. Nothing in these
materials is an offer to sell any of the components or devices referenced herein.

©2018-2023 Qualcomm Technologies, Inc. and/or its affiliated companies.
All Rights Reserved.

Confidential - Qualcomm Technologies, Inc. and/or its affiliated companies - May Contain Trade Secrets

Qualcomm, Snapdragon, and Hexagon are trademarks or registered
trademarks of Qualcomm Incorporated.

Other products and brand names may be trademarks or registered trademarks
of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated,
Qualcomm Technologies, Inc., and/or other subsidiaries or business units within

the Qualcomm corporate structure, as applicable. Qualcomm Incorporated

includes our licensing business, QTL, and the vast majority of our patent portfolio.
Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates,
along with its subsidiaries, substantially all of our engineering, research and
development functions, and substantially all of our products and services businesses,
including our QCT semiconductor business.

Snapdragon and Qualcomm branded products are products of Qualcomm
Technologies, Inc. and/or its subsidiaries. Qualcomm patented technologies
are licensed by Qualcomm Incorporated.



