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Optimizing Hardware for AI

Neural Networks: A mundane pile of linear algebra

1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order

Tensor) Tensor) Tensor) Tensor)




Optimizing Hardware for AI

Neural Networks:

A mundane pile of linear algebra

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
Pooling Conv Pooling
2 X 2 5 x 5 x 2 X 2 Fe Fe
A Ly A
4 AY4 \/_)H 4 \/_)H
Setup

28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 4 x 4 x bu 1024 10
1 32 32 by




Optimizing Hardware for AI

Neural Networks: A mundane pile of linear algebra

Hexagon Processor

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)

Setup

28 x 28 x 24 x 24 x 12 x 12 x
1 32 32

1024 10




Optimizing Hardware for AI

Neural Networks: A mundane pile of linear algebra

Hexagon Processor

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order Seal
calar
Tensor) Tensor) Tensor) Tensor) Threads \“
x. FC FC
A
N A
Setup
28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 1024 10
1 32 32 LY
Scalar

Processor




Optimizing Hardware for AI

Neural Networks:

A mundane pile of linear algebra

1 1
| 1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
FC FC
A
N A
Setup
28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 1024 10
1 32 32 LY
Scalar Vector Vector
Processor Processor Processor

Hexagon

Scalar

Scalar
Threads \

Vector

Processor




Optimizing Hardware for AI

Neural Networks:

A mundane pile of linear algebra

I

I

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
FC FC
A
\f_JK_\
Setup
28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 1024 10
1 32 32 LY
Scalar Vector Tensor Vector
Processor Processor Processor Processor

Hexagon

Scalar

Scalar
Threads \

Vector

Processor

Matrix

HMX
INTS

HMX
FP1k




Optimizing Hardware for AI

Neural Networks:

A mundane pile of linear algebra

I

I

_—
1 J
Scalar Vector Matrix 3D Array
(Zero=-order (First-order (Second=-order (Third-order
Tensor) Tensor) Tensor) Tensor)
FC FC
A
N A
Setup
28 x 28 x 24 x 24 x 12 x 12 x 8 x 8 x 1024 10
1 32 32 LY
Scalar Vector Tensor Vector
Processor Processor Processor Processor

Hexagon Processor

Scalar Memory Processing

Scalar
Threads \

Vector Matrix

10
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Neural Networks: A mundane pile of linear algebra Optimization Goals
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Optimizing Hardware for AI: Transformers
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Hexagon Processor: (Concurrency Model
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Break neural network layers into smaller data piece /
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Scheduler and Sequencer tools dictate order of tile execution
to get best performance (completion time) & reduce DDR BW and
power. To handle variety of network architectures, different
types of sequencers are created. Each Sequencer is composed of
cooperating algos & heuristics where some can be non-linear -
small changes in networks give different results
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Break neural network layers into smaller data piece /
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To minimize DDR Bandwidth pressure, utilize locality between

successive layers to reduce DDR BW. Conside

layers:

* Output of layer n is the input of layer
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* Output of Layer (n+2) is divided into fot
Each portion results in a separate into comy

Intermediate results within a cone are stor«
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each layer produces the output required by
downstream consumer — this defines a ‘cone’

of data that is produced in one depth-first pass.
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AI Model Compilation: Steps
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Simplify graph by op fusiona const-prop-. common sub
expressions. etc.

Break neural network into smaller data pieces

Define order of execution for each data piece and data
movement

Define parallel execution on engines for Performance/BU

Generate the optimized list of functions to run on hardware

33



AL 110Ul LOomMmpliiallOrne asQueEencer detverminegs oprimal
order

What order do I execute each
operation?

All orders must follow a
topological sort.

ACT 0 ACT 1

CONV_A_1

(ONV_B_1

WT_A

WT_B

Red lines show 3 potential valid topological
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) 1102 Valid topological sorts for this simple
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Compiler algos trade-off DDR BW & Performance (latency)

Very simple network for
for each network.
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10 operations 34



AI Model Compilation: Optimal Execution Order
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AI Model Compilation: Optimal Execution Order
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AI Model Compilation: Optimal Execution Order
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AI Model Compilation: Optimal Execution Order
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AI Model Compilation: Optimal Execution Order
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AI Model Compilation: Optimal Execution Order
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AI Model Compilation: Optimal Execution Order
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‘AI Model Performance: inf/sec per watt
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