
@qualcomm

Felix Baum

Senior Director, Product Management

Qualcomm Technologies, Inc.

ML Inference at the

Edge

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its

subsidiaries.

2

We are leading the
realization of the hybrid AI

Convergence of:

Wireless connectivity

Efficient computing

Distributed AI

Unlocking the data

that will fuel our digital

future and generative AI

To scale, the center of
gravity of AI processing is

moving to the edge

Central cloud Edge cloud On device

Hybrid AI

2

Cost

Energy

Reliability, latency,
& performance

Privacy & security

Personalization

3

Choose env.,

config.,

model and

framework

Does the

model meet

performance

metrics

Train,

Finetune

model

Add custom

layers and/or

fix errors

Qualcomm® Neural Processing SDK

and Qualcomm® AI Engine direct

Converter and Quantizer

Custom Ops

LLVM (C/C++)

TVM (Python)

Data

Scientist

ML Training

Engineer

Environment Training Compilation

Formats

supported

Accuracy

Evaluation

Is the

model’s

accuracy

acceptabl

e?

Debug and

fix errors

Accuracy

analysis

Model

Compilation/

Runner

Does the

model

compile?

Is the

model’s

output &

latency

acceptable?

Profile

model Perf

Did that

work?

Use advanced

optimization

techniques

Optimizations

ML Inference

Engineer

Integrate

model into App

or pipeline

Deploy

App

App

Developer

DevOps

Engineer

Integration Deployment

NAS

QAT

Qualcomm® Hexagon™

Processor QeMU

Simulator

Simulation

environment for

bit accurate

validation

Hexagon VS Code

Improved IDE for

Debugging, Profiling

and Trace Analysis

Performance Analyzer

Hexagon Processor

profiler that provides

guidance on expected

performance.

Accuracy Debugger

Per layer output

analysis for backends.

Accuracy Evaluator

Automated

quantization using

all quantization

options for best

accuracy

Quantization Checker

Detect potential

accuracy issues by

flagging suboptimal

quantization

encodings

Architecture

Checker

Automated model

topology and

architecture

analysis

Qualcomm

AI Studio®
AI model

Efficiency

Toolkit (AIMET)

AIMET is a product of Qualcomm Innovation Center, Inc

4

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

5

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI

Setup

28 x 28 x

1

24 x 24 x

32

12 x 12 x

32

8 x 8 x

64

4 x 4 x 64 1024 10

FC FC
Pooling

2 x 2

Conv

5 x 5 x

64

Pooling

2 x 2

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

6

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Hexagon Processor

Setup

28 x 28 x

1

24 x 24 x

32

12 x 12 x

32

8 x 8 x

64

4 x 4 x 64 1024 10

FC FC
Pooling

2 x 2

Conv

5 x 5 x

64

Pooling

2 x 2

7

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Setup

28 x 28 x

1

24 x 24 x

32

12 x 12 x

32

8 x 8 x

64

4 x 4 x 64 1024 10

FC FC
Pooling

2 x 2

Conv

5 x 5 x

64

Pooling

2 x 2

Hexagon Processor

Scalar

Scalar

Threads

Scalar

Processor

8

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Scalar

Processor

Vector

Processor

Vector

Processor

Setup

28 x 28 x

1

24 x 24 x

32

12 x 12 x

32

8 x 8 x

64

4 x 4 x 64 1024 10

FC FC
Pooling

2 x 2

Conv

5 x 5 x

64

Pooling

2 x 2

Hexagon Processor

Scalar

Vector

Scalar

Threads

HVX

9

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Scalar

Processor

Vector

Processor

Tensor

Processor

Vector

Processor

Setup

28 x 28 x

1

24 x 24 x

32

12 x 12 x

32

8 x 8 x

64

4 x 4 x 64 1024 10

FC FC
Pooling

2 x 2

Conv

5 x 5 x

64

Pooling

2 x 2

Hexagon Processor

Scalar

Vector

Scalar

Threads

HVX

Matrix

HMX
INT8

HMX
FP16

10

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Scalar

Processor

Vector

Processor

Tensor

Processor

Vector

Processor

Setup

28 x 28 x

1

24 x 24 x

32

12 x 12 x

32

8 x 8 x

64

4 x 4 x 64 1024 10

FC FC
Pooling

2 x 2

Conv

5 x 5 x

64

Pooling

2 x 2

Hexagon Processor

Scalar Memory Processing

MatrixVector

TCM

HMX
INT8

Scalar

Threads

HVX

L2$
DMA

Engine

HMX
FP16

11

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Scalar

Processor

Vector

Processor

Tensor

Processor

Vector

Processor

Setup

28 x 28 x

1

24 x 24 x

32

12 x 12 x

32

8 x 8 x

64

4 x 4 x 64 1024 10

FC FC
Pooling

2 x 2

Conv

5 x 5 x

64

Pooling

2 x 2

Optimization Goals

1. Maximize parallelism

Hexagon Processor

Memory Processing

TCM

L2$
DMA

Engine

1Parallelism

Vector

HVX

Matrix

HMX
INT8

HMX
FP16

Scalar

Scalar

Threads

12

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Scalar

Processor

Vector

Processor

Tensor

Processor

Vector

Processor

Setup

28 x 28 x

1

24 x 24 x

32

12 x 12 x

32

8 x 8 x

64

4 x 4 x 64 1024 10

FC FC
Pooling

2 x 2

Conv

5 x 5 x

64

Pooling

2 x 2

Optimization Goals

1. Maximize parallelism

2. Minimize data

movement

Hexagon Processor

Scalar

Vector

Scalar

Threads

HVX

2 Memory

Access

Matrix

HMX
INT8

HMX
FP16

TCM

DRAM

Memory Processing

L2$
DMA

Engine

13

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Scalar

Processor

Vector

Processor

Tensor

Processor

Vector

Processor

Setup

28 x 28 x

1

24 x 24 x

32

12 x 12 x

32

8 x 8 x

64

4 x 4 x 64 1024 10

FC FC
Pooling

2 x 2

Conv

5 x 5 x

64

Pooling

2 x 2

Hexagon Processor

Scalar Memory Processing

MatrixVector

TCM

HMX
INT8

Scalar

Threads

HVX

L2$
DMA

Engine

HMX
FP16

Optimization Goals

1. Maximize parallelism

2. Minimize data

movement

14

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Scalar

Processor

Setup

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI: Transformers
Optimization Goals

1. Maximize parallelism

2. Minimize data

movement

HVX

(~70%)

HMX

(~30%)

Transformer

Architecture

Hexagon Processor

Scalar Memory Processing

MatrixVector

TCM

HMX
INT8

Scalar

Threads

HVX

L2$
DMA

Engine

HMX
FP16

15

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Scalar

Processor

Setup

Neural Networks: A mundane pile of linear algebra

Optimizing Hardware for AI: Super Resolution
Optimization Goals

1. Maximize parallelism

2. Minimize data

movement

HVX

(~30%)

HMX

(~90%)

Super Resolution

Architecture

Hexagon Processor

Scalar Memory Processing

MatrixVector

TCM

HMX
INT8

Scalar

Threads

HVX

L2$
DMA

Engine

HMX
FP16

ABPN, SESR, XLSR, Q-

SRNet

16

1

I

1 J

1

I

Scalar

(Zero-order

Tensor)

Vector

(First-order

Tensor)

Matrix

(Second-order

Tensor)

3D Array

(Third-order

Tensor)

Scalar

Processor

Vector

Processor

Tensor

Processor

Vector

Processor

Setup

28 x 28 x

1

24 x 24 x

32

12 x 12 x

32

8 x 8 x

64

4 x 4 x 64 1024 10

FC FC
Pooling

2 x 2

Conv

5 x 5 x

64

Pooling

2 x 2

Hexagon Processor: Execution of ML use cases
Optimization Goals

1. Maximize parallelism

2. Minimize data

movement

Hexagon Processor

Scalar Memory Processing

MatrixVector

TCM

HMX
INT8

Scalar

Threads

HVX

L2$
DMA

Engine

HMX
FP16

17

Pre-

Processing

Pre-

Processing
ML

Post-

Processing

Post-

Processing
ML

HVX HVX HVXHVX, HMX

Mono

RGB

Hexagon Processor

Scalar Memory Processing

HMXHVX

VTCM Matrix

Engine

Thread 1

L2$
DMA

Engine

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Vector 1

Vector 2

Vector 3

Vector 4

Hexagon Processor: Execution of end-to-end use
cases

18

Hexagon Processor

Memory Processing

HMX

VTCM Matrix

Engine

L2$
DMA

Engine

Hexagon Processor: Concurrency Model

Pre-

Processing

Pre-

Processing
ML

Post-

Processing

HVX HVX HVXHVX, HMX

Mono

RGB

Post-

Processing

ML

Implementing +

concurrency

ML CV

Scalar

HVX

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Vector 1

Vector 2

Vector 3

Vector 4

19

VTCM Partitioning between

+

Hexagon Processor

Memory Processing

HMX

Matrix

Engine

L2$
DMA

Engine

Hexagon Processor: Concurrency Model

Pre-

Processing

Pre-

Processing
ML

Post-

Processing

HVX HVX HVXHVX, HMX

Mono

RGB

Post-

Processing

ML

ML CV

Scalar

VTCM

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Partitio

n

HVX

Vector 1

Vector 2

Vector 3

Vector 4

20

AI Model Compilation: Steps
C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Common Graph

optimizations

Converter

Quantizer

Framework optimizations

21

AI Model Compilation: Steps
C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Common Graph

optimizations

Converter

Quantizer

Framework optimizations

22

AI Model Compilation: Steps
C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Framework graph is translated to the IR Graph

Common Graph

optimizations

Converter

Quantizer

Framework optimizations

23

AI Model Compilation: Steps
C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Common Graph

optimizations

Converter

Quantizer

Framework optimizations

24

AI Model Compilation: Steps
C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Common Graph

optimizations

Converter

Quantizer

Framework optimizations

25

AI Model Compilation: Steps
C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Common Graph

optimizations

Converter

Quantizer

Framework optimizations

Tile

s

Layer HMX
HVX

H
W
-
a
w
a
r
e

M
L

G
r
a
p
h

C
o
m
p
i
l
e
r

Naive sequencers executed Nets “Layer-by-Layer”, sequentially.

Sometimes 1-3 layers can be aggregated (e.g., conv followed by

RELU). “Layer by Layer” leaves performance and memory

bandwidth on the table:
• If we exploit concurrencies

and simultaneously operate on

data from multiple layers,

execution finishes faster

• A layer’s output, once

consumed by next layer, is

discardable. This saves DDR

bandwidth, but TCM must be

large enough, or data unit

small enough, to store

intermediate output

Sequence

gen

Tiling

Sequencer

Scheduler

Backend

opt

HW

Optimize

d

ML

Kernel

Library

26

Simplify graph by backend aware op fusion, const-prop, common

sub expressions, etc.

AI Model Compilation: Steps

Common Graph

optimizations

Converter

Quantizer

Framework opt

H
W
-
a
w
a
r
e

M
L

G
r
a
p
h

C
o
m
p
i
l
e
r

C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Sequence

gen

Tiling

Sequencer

Scheduler

Backend

opt

HW

Optimize

d

ML

Kernel

Library

27

Simplify graph by backend aware op fusion, const-prop, common

sub expressions, etc.

AI Model Compilation: Steps

Common Graph

optimizations

Converter

Quantizer

Framework opt

H
W
-
a
w
a
r
e

M
L

G
r
a
p
h

C
o
m
p
i
l
e
r

C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Break neural network layers into smaller data piece /

execution chunks (tiles)

Sequence

gen

Tiling

Sequencer

Scheduler

Backend

opt

HW

Optimize

d

ML

Kernel

Library

28

Simplify graph by backend aware op fusion, const-prop, common

sub expressions, etc.

AI Model Compilation: Steps

Common Graph

optimizations

Converter

Quantizer

Framework opt

H
W
-
a
w
a
r
e

M
L

G
r
a
p
h

C
o
m
p
i
l
e
r

C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Break neural network layers into smaller data piece /

execution chunks (tiles)

Scheduler and Sequencer tools dictate order of tile execution

to get best performance (completion time) & reduce DDR BW and

power. To handle variety of network architectures, different

types of sequencers are created. Each Sequencer is composed of

cooperating algos & heuristics where some can be non-linear –

small changes in networks give different results
Sequence

gen

Tiling

Sequencer

Scheduler

Backend

opt

HW

Optimize

d

ML

Kernel

Library

29

Simplify graph by backend aware op fusion, const-prop, common

sub expressions, etc.

AI Model Compilation: Steps

Common Graph

optimizations

Converter

Quantizer

Framework opt

H
W
-
a
w
a
r
e

M
L

G
r
a
p
h

C
o
m
p
i
l
e
r

C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Break neural network layers into smaller data piece /

execution chunks (tiles)

To minimize DDR Bandwidth pressure, utilize locality between

successive layers to reduce DDR BW. Consider three sequential

layers:

• Output of layer n is the input of layer (n+1)

• Output of layer (n+1) is the input of layer (n+2)

• Output of Layer (n+2) is divided into four portions

Each portion results in a separate into computation ‘cones’.

Intermediate results within a cone are stored in local TCM –

do not consume DDR bandwidth.

Sequence

gen

Tiling

Sequencer

Scheduler

Backend

opt

HW

Optimize

d

ML

Kernel

Library

30

Simplify graph by backend aware op fusion, const-prop, common

sub expressions, etc.

AI Model Compilation: Steps

Common Graph

optimizations

Converter

Quantizer

Framework opt

H
W
-
a
w
a
r
e

M
L

G
r
a
p
h

C
o
m
p
i
l
e
r

C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Break neural network layers into smaller data piece /

execution chunks (tiles)

To minimize DDR Bandwidth pressure, utilize locality between

successive layers to reduce DDR BW. Consider three sequential

layers:

• Output of layer n is the input of layer (n+1)

• Output of layer (n+1) is the input of layer (n+2)

• Output of Layer (n+2) is divided into four portions

Each portion results in a separate into computation ‘cones’.

Intermediate results within a cone are stored in local TCM –

do not consume DDR bandwidth.

Sequence

gen

Tiling

Sequencer

Scheduler

Backend

opt

HW

Optimize

d

ML

Kernel

Library

31

Simplify graph by backend aware op fusion, const-prop, common

sub expressions, etc.

AI Model Compilation: Steps

Common Graph

optimizations

Converter

Quantizer

Framework opt

H
W
-
a
w
a
r
e

M
L

G
r
a
p
h

C
o
m
p
i
l
e
r

C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Break neural network layers into smaller data piece /

execution chunks (tiles)

Define order of execution for each data piece and data

movement

Sequence

gen

Tiling

Sequencer

Scheduler

Backend

opt

HW

Optimize

d

ML

Kernel

Library

32

Simplify graph by backend aware op fusion, const-prop, common

sub expressions, etc.

AI Model Compilation: Steps

Common Graph

optimizations

Converter

Quantizer

Framework opt

H
W
-
a
w
a
r
e

M
L

G
r
a
p
h

C
o
m
p
i
l
e
r

C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Break neural network layers into smaller data piece /

execution chunks (tiles)

Define order of execution for each data piece and data

movement

Define parallel execution on engines for Performance/BW

Sequence

gen

Tiling

Sequencer

Scheduler

Backend

opt

HW

Optimize

d

ML

Kernel

Library

33

Break neural network into smaller data pieces

Define order of execution for each data piece and data

movement

Define parallel execution on engines for Performance/BW

Generate the optimized list of functions to run on hardware

Simplify graph by op fusion, const-prop, common sub

expressions, etc.

AI Model Compilation: Steps

Common Graph

optimizations

Converter

Quantizer

Framework opt

H
W
-
a
w
a
r
e

M
L

G
r
a
p
h

C
o
m
p
i
l
e
r

C
o
n
v
e
r
s
i
o
n

/

Q
u
a
n
t
i
z
a
t
i
o
n

Framework graph is translated to the IR Graph

If required, graph can be quantized according to various

config. parameters

Framework agnostic graph optimizations are applied such as

batchnorm folding

Framework level (Pytorch, TF, etc) optimizations, op folding,

etc.

Sequence

gen

Tiling

Sequencer

Scheduler

Backend

opt

HW

Optimize

d

ML

Kernel

Library

34

What order do I execute each

operation?

All orders must follow a

topological sort.

CONV_A_0 CONV_A_1

CONV_B_0 CONV_B_1

POOL_0 POOL_1

WT_B

WT_A

ACT_0 ACT_1

CONV_A_0 CONV_A_1

CONV_B_0 CONV_B_1

POOL_0 POOL_1

WT_B

WT_A

ACT_0 ACT_1

CONV_A_0 CONV_A_1

CONV_B_0 CONV_B_1

POOL_0 POOL_1

WT_B

WT_A

ACT_0 ACT_1

CONV_A_0 CONV_A_1

CONV_B_0 CONV_B_1

POOL_0 POOL_1

WT_B

WT_A

ACT_0 ACT_1

Very simple network for

illustration with only

10 operations

1102 Valid topological sorts for this simple

network of 10 operations!

Red lines show 3 potential valid topological

sorts

Compiler algos trade-off DDR BW & Performance (latency)

for each network.

AI Model Compilation: Sequencer determines optimal
order

35

CBA Run Order:

A B C

Foregroun

d Process

Backgroun

d Process

1

Execution
Cycles

Backgroun

d Process

2

Threads, Run Orders, Timelines

AI Model Compilation: Optimal Execution Order

36

CBA Run Order:

A B C

Execution
Cycles

Foregroun

d Process

Backgroun

d Process

1
Backgroun

d Process

2

Threads, Run Orders, Timelines

AI Model Compilation: Optimal Execution Order

37

Execution
Cycles

Run Order:

A B C

Foregroun

d Process

Backgroun

d Process

1
Backgroun

d Process

2

Tiling

AI Model Compilation: Optimal Execution Order

38

Execution
Cycles

Run Order:

A B1 B2 C1 C2 C3 C4

Foregroun

d Process

Backgroun

d Process

1
Backgroun

d Process

2

Tiling

AI Model Compilation: Optimal Execution Order

39

Run Order:

A B1 B2 C1 C2 C3 C4

Execution
Cycles

Foregroun

d Process

Backgroun

d Process

1
Backgroun

d Process

2

Tiling

AI Model Compilation: Optimal Execution Order

40

Execution
Cycles

Run Order:

A B1 B2 C1 C2 C3 C4

Foregroun

d Process

Backgroun

d Process

1
Backgroun

d Process

2

Scheduling

AI Model Compilation: Optimal Execution Order

41

Execution
Cycles

Run Order:

A B1 C1 C2 B2 C3 C4

C1 and C2 only
depend on B1, so

they can be
reordered with B2.

Foregroun

d Process

Backgroun

d Process

1
Backgroun

d Process

2

Scheduling

AI Model Compilation: Optimal Execution Order

42

Run Order:

A B1 C1 C2 B2 C3 C4

C1 and C2 only
depend on B1, so

they can be
reordered with B2.

Execution
Cycles

Foregroun

d Process

Backgroun

d Process

1
Backgroun

d Process

2

Optimal ordering

AI Model Compilation: Optimal Execution Order

43

AI Model Performance: inf/sec

Super resolution (RDN)

Competitor A

Face recognition (FaceNet)

Competitor A

Bokeh (DeeplabV3+)

Competitor A

Natural language processing (MobileBERT)

Competitor A

Snapdragon 8 Gen2

Snapdragon 8 Gen2

Snapdragon 8 Gen2

Snapdragon 8 Gen2

VS

*Qualcomm Technologies internal

test results

Competitor A

Competitor B

Competitor B

Competitor B

Competitor B

Competitor B

44

AI Model Performance: inf/sec per watt

Super resolution (RDN)

Competitor A

Face recognition (FaceNet)

Competitor A

Bokeh (DeeplabV3+)

Competitor A

Natural language processing (MobileBERT)

Competitor A

Snapdragon 8 Gen2

Snapdragon 8 Gen2

Snapdragon 8 Gen2

Snapdragon 8 Gen2

VS

*Qualcomm Technologies internal

test results

Competitor A

Competitor B

Competitor B

Competitor B

Competitor B

Competitor B

Thank you
All data and information contained in or disclosed by this document is confidential

and proprietary information of Qualcomm Technologies, Inc. and/or its affiliated

companies and all rights therein are expressly reserved. By accepting this material the

recipient agrees that this material and the information contained therein will not be used,

copied, reproduced in whole or in part, nor its contents revealed in any manner to others

without the express written permission of Qualcomm Technologies, Inc. Nothing in these

materials is an offer to sell any of the components or devices referenced herein.

©2018-2023 Qualcomm Technologies, Inc. and/or its affiliated companies.

All Rights Reserved.

Follow us on:

For more information, visit us at:

qualcomm.com & qualcomm.com/blog

Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade Secrets

Qualcomm, Snapdragon, and Hexagon are trademarks or registered

trademarks of Qualcomm Incorporated.

Other products and brand names may be trademarks or registered trademarks

of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated,

Qualcomm Technologies, Inc., and/or other subsidiaries or business units within

the Qualcomm corporate structure, as applicable. Qualcomm Incorporated

includes our licensing business, QTL, and the vast majority of our patent portfolio.

Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates,

along with its subsidiaries, substantially all of our engineering, research and

development functions, and substantially all of our products and services businesses,

including our QCT semiconductor business.

Snapdragon and Qualcomm branded products are products of Qualcomm

Technologies, Inc. and/or its subsidiaries. Qualcomm patented technologies

are licensed by Qualcomm Incorporated.

