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A Brief History of AI Models 
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* Source: Partly from Hoi-Jun Yoo, ISSCC 2019



A Brief History of LLMs (2019 – 2023)
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*image credit: Wayne Xin Zhao, et.al, “A Survey of Large Language Models”



Introduction to ML Inference

+ ML Model Operations Converges to a small subset of operators 

– ONNX v1.15.0 (192 Operators)

– Key operators:

 >90% of Number of Parameters and Computation FLOPS

 Convolution, Matrix Multiplication, Inner Product, Element-wise 
Addition, Mean, Reshape, etc.
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ResNet50: Conv, Matrix Multiplication, Pooling, ReLU
Transformer: Matrix Multiplication, Element-
wise Operations, GELU, Softmax, Embedding 
Lookup, etc.
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Sparsity ML Inference

+ The core of ML inference  is Tensor Algebra

– Tensor format,  E.g., a typical 4D tensor (NHWC) in image 
processing

+ Sparsity in ML Inference

– Zero naturally exist or can be induced in Tensors 

– No need to store zero or compute zero in a tensor

  Save storage, computation time, memory bandwidth, 
reduce power

  Extra HW cost for compression, decompression, 
schedule (limit the throughput and power/area 
overhead) “Sparsity Tax” 
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0D Tensor/ Scalar



Sparsity on Convolution Kernels 
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+ Convolution Kernels can be converted 
to weight matrix

– Filter sparsity

– Shape sparsity

– Channel sparsity



Sparsity is an Active Algorithm Research Area
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• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural 

Networks (MIT) – ICLR 2019 Best Paper

→ Any dense neural network contains one sparse neural network

Image Credit: Torsten Hoefler et.al, Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks

A
cc

ur
ac

y

101 102 103 104

84

76

80

105

Sparse 
EfficientNets

MFLOPs

EfficientNets
(B1-B6)

Google & Deepmind paper, “Fast Sparse ConvNets”



Type of Sparsity in ML Inference
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+ Static and Dynamic Sparsity

+ Weight Sparsity 

+ Static Weight Sparsity (Pruning)

+ Dynamic Weight Sparsity (Conditional)

+ Activation Sparsity 

+ Contextual/Attention Sparsity (LLM)

+ Feature Sparsity (CV)

+ Sparsity Granularity

+ Coarse-granularity Sparsity

+ Fine-grained Sparsity

+ Sparsity Patten 

+ Structured sparsity  

+ Unstructured sparsity

X =

Weight/Activation Activation Output



Sparse Matrix Storage Format
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+ Bitmap

+ Run-length /delta

+ Compressed Sparse Row / Column (CSR/CSC)

+ Coordinate Offset (index, value)

+ Hierarchical Hybrid Sparse Format 

Image Credit: Torsten Hoefler et.al, Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks



Sparse Matrix Format: CSR and CSC Format
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CSR Format
• Data: an array for all non-zero values
• Column_offsets[i]: records the actual column index 

of the data[i]
• Row_pointers[i]: records the number of non-zero 

of of all (i-1) rows

CSC Format
• Data: an array for all non-zero values
• Row_offsets[i]: records the actual row index of the 

data[i]
• Column_pointers[i]: records the number of non-

zero of of all (i-1) columns 



Sparse Matrix Format: Coordinate Index and Hierarchical Hybrid Format

13Image Credit: Se Jung Kwon et. al, Structured Compression by Weight Encryption for Unstructured Pruning and Quantization 

Hierarchical Hybrid Format
Top-level: bit-vector format: (0, 1, 1, 0)
Block-level: CSR/CSC/Coordinate Offset  

Coordinate Index
Structured and Unstructured Sparsity



Activation Sparsity and Conditional Sparsity 

+ Activation Sparsity
– Sparse Input data or induced activation matrix 

based on activation functions (ReLU/Softmax)

– Dynamic Sparsity (run time)

+ Conditional Sparsity 
– Conditions are normally calculated at runtime 

based on input

– Use the condition to decide the weight matrix 
patterns 

 block level

 sub-model level (MoE)

– Use the condition to decide token correlation 

 Sparse Attention in LLM
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Activation Sparsity

Sparse Attention

FFN0 FFN1 FFN2 FFN3

Router

Mixture of Experts (MoE)
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Sparsity Tax and HW/SW Scenario

+ Sparsity Tax

– Extra storage overhead  

– Extra decompression/compression overhead

– Model accuracy loss

– No wall-clock speedup or even slower without 
special sparse accelerators

+ Sparsity Support on devices

– CPU

– GPU

– AI Accelerators
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Highly-sparse Matrix/Vector
HPC field

Coarse-grained sparsity
Fine-grained 2:4 

Structure Sparsity

All sparsity type 
(Dynamic, Static, Structured, non-structured, fine-

grained, coarse-grained, conditional execution)



Sparse AI Accelerator Architecture Design Consideration 
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+ Sparsity Support Impact on AI Accelerator Design 

– Programming Model

– Scheduler (Data Flow)

– Memory Systems

– Tensor Core Processing Datapath



Challenges in Designing Sparse Accelerators
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Architecture/Algorithm Co-design
Application Requirements

Cost to Retrain
Time-to-Market

Decompression/compression
Workload Imbalance

Area and power overhead

Model 
Accuracy

Sparsity 
Tax

 

  Benefits
 

Design
Trade-off

TCO Saving
Wall-clock speedup  

Power saving
Area Saving (memory, die size)
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An Overview of Mainstream AI Accelerator Architecture 

20

 CPU (X86, RISC-V): Vector/Matrix Instruction Extension
 Nvidia Tensor Core: 4x4 GEMM
 Huawei Ascend: 16x16 GEMM + VPU
 Google TPU: Systolic Array + VPU 
 Graphcore: Massively Parallel BSP Cores
 SambaNova: Dataflow RDU 
 Cerebras: Wafer-scale many-core architecture  
 Habala Labs/Intel Spring Hill: DSP Array + GEMM  
 Cambricon/Hanguang 800/NVDLA/Tesla FSD: DSA Accelerators

Popular AI 
Accelerators

 Spiking Neural Nets and Neuromorphic Architectures
 Resistor/Memristor matrices and Analog Computing
 Optical and Spintronics Implementations 

Special 
Technology

AI Accelerators

 Key buzz words: Systolic Array, Tensor Core, Vector Core, Many-core, DSA, Dataflow  

 Special Technology AI Accelerators: Very efficient for specific applications, limited operator support



Sparsity Support CPUs
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Image Source: https://github.com/neuralmagic/deepsparse

+ CPU offers thread-level parallelism and dense 
vector/matrix extension

– Limited by low peak MAC performance of CPUs  

– Limited by SW for sparse matrix compress and 
decompress  

 Limit speedup for sparse matrix

 Available Intel Sparse BLAS support

Neuralmagic’s DeepSparse Inference Runtime on CPU



Sparsity Support on GPU Tensor Core – Micro-52 (2019)
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Image Source: Maohua Zhu et. al, Sparse Tensor Core: Algorithm and Hardware Co-Design for Vector-wise Sparse Neural Networks on Modern GPUs

+ Weight Sparsity

– Structured

– Vector-wise Balanced Sparse Pattern

+ Minimal change to Volta GPU Tensor 
core

– 75% sparsity with 1.49x speedup vs 
dense tensor core



Nvidia Ampere/Hopper Sparse Tensor Core
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Image Source: Nvidia website



Nvidia Ampere/Hopper Sparse Core Performance 
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Data Source: Nvidia website

Speedup on Matrix-Multiplication
Speedup on Convolution

End to End Inference Speedup



Sparsity Support on TPUs – (ICS 2020)
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Image Source: Xin He, Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices, ICS 2020

+ TPU is difficult to support sparsity
– Static and fixed data-flow

+ Research on SparseTPU
– Packing technique to condense sparse 

matrices

– Still calculate some zeros and no reduce 
of memory footprint

– Performance gain:

 16.08x and 4.39x and 19.79x lower 
energy (INT8/FP32)

– Sparsity tax:

 12.93% area overhead

 4.14% energy overhead (FP32 TPU)



Sparsity Support on TPUs:  – (ICS 2020)
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Image Source: Xin He, Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices, ICS 2020)



MIT Eyeriss Project – Eyeriss v1 (2016 ISSCC)
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Image Source: Yu-Hsin Chen et. al Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks

+ One of the earliest AI Accelerator chip

– A Spatial Multi-PE architecture

– Support Weight Sparsity by reducing
memory footprint and bandwidth

– Saving power by clock gating PE for zero 
operands

– No wall-clock speedup



MIT Eyeriss Project – Eyeriss v2 (2018)
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Image Source: Yu-Hsin Chen et. al Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

+ Compared to Eyeriss v1

– A Scalable Architecture

– Change of matrix compressed format

– Dual-sparsity Support

– Wall-clock speedup



MIT Eyeriss Project – Eyeriss v2 (2018)
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Image Source: Yu-Hsin Chen et. al Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices



EIE: Efficient Inference Engine on Compressed Deep Neural Network (2016)
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Image Source: Song Han et. al, EIE: Efficient Inference Engine on Compressed Deep Neural Network

+ One of the earliest AI Accelerator research

– A Spatial Multi-PE architecture

– Support dual sparsity by reducing memory
footprint and bandwidth and save wall-
clock speedup

– Weight matrices: CSC format

– Proposed an activation buffer before 
different PEs for workload balance

– Use activation to lookup compressed 
weight



EIE uArch
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Image Source: Song Han et. al, EIE: Efficient Inference Engine on Compressed Deep Neural Network



Alibaba Hanguang-800 Sparsity Engine (2020)
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Source: Hanguang 800 NPU – The Ultimate AI Inference Solution for Data Centers, Hotchips 2020

+ A High-performance 
Commercial Data-center 
Inference Chip

– DSA architecture

– Support weight 
compression in memory to 
reduce memory footprint

– No external DDR and all-
on-chip Memory

– Weight matrices: bit-
vector representation for 
low to medium sparsity

– No wall-clock speedup 



SambaNova RDU Sparsity Support
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* Source: SambaNova SN10 RDU: Accelerating Software 2.0 with Dataflow, Hotchips 2021

+ A Reconfigurable Dataflow 
tiled Architecture (RDU 
series)

– Scalable design with on-chip switch 
connect array of RDUs and memory 
units 

– Scale-out support

– Support CSR-like matrix
compression

– Wall clock-time speedup



Cerebras Sparsity Support

34
Cerebras Architecture Deep Dive: First Look Inside the HW/SW Co-Design for Deep Learning, Hotchips 2022

+ A commercial data-flow 
wafer-scale spatial 
architecture

+ Fine-granularity fully
unstructured sparse 
MatMul

+ 10x sparse utilization vs. 
GPU

+ Not clear on the weight 
sparse storage format 



Recent Industry Trends on Sparse Transformers
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Image credit:  https://neuralmagic.com/blog/sparsegpt-remove-100-billion-parameters-for-free/

+ A One-shot post-training sparse methods

+ 50% sparsity to deploy on A100/H100 GPU 



Recent Industry Trends on Sparse Transformers
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Image credit:  Cerebras website

+ Company: Cerebras

+ GPT-3 XL 1.3B parameter model with 84% sparsity

– 3x fewer inference FLOPS

– 4.3x fewer parameters

– No loss in accuracy  



Summary
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+ Sparsity is an active research area
– Promising direction for both Vision and LLM

– Save computation, memory bandwidth/capacity and power

– Reduce TCO 

+ The memory storage format is the key for hardware support of sparsity
– Affected by algorithm (sparsity ratio, accuracy)

– Impact on:
 Memory system design

 Datapath design

 Scheduler design

+ Sparse AI Accelerator needs trade off on more dimension
– Model Accuracy

– Sparsity overhead

– Sparsity benefits

+ Research and commercial AI accelerators are embracing sparsity support



Moffett Deep-Sparse AI Inference chip will be presented at 
Tuesday Afternoon Session

Thank you and Questions?


