

MOFFETT AI

Hardware Support Requirement of Sparse ML Inference

Dr. Zhibin Xiao Chief Architect and Co-founder Moffett Al

Outline

- Introduction to ML Inference
- Sparsity in ML Inference
- Hardware Software Co-design for Sparsity
- Case Studies: Sparsity Support in CPU, GPU and AI Chips
- Summary

A Brief History of AI Models

A Brief History of LLMs (2019 – 2023)

*image credit: Wayne Xin Zhao, et.al, "A Survey of Large Language Models"

CHIPS

MOFFETT AI

Introduction to ML Inference

- ONNX v1.15.0 (192 Operators)
- Key operators:
 - >90% of Number of Parameters and Computation FLOPS
 - Convolution, Matrix Multiplication, Inner Product, Element-wise Addition, Mean, Reshape, etc.

ResNet50: Conv, Matrix Multiplication, Pooling, ReLU

Transformer: Matrix Multiplication, Elementwise Operations, GELU, Softmax, Embedding Lookup, etc.

MOFFETT AI

Outline

- Introduction to ML Inference
- Sparsity in ML Inference
- Hardware Software Co-design for Sparsity
- Case Studies: Sparsity Support in CPU, GPU and AI Chips
- Summary

Sparsity ML Inference

- + The core of ML inference is Tensor Algebra
 - Tensor format, E.g., a typical 4D tensor (NHWC) in image processing
- + Sparsity in ML Inference
 - Zero naturally exist or can be induced in Tensors
 - No need to store zero or compute zero in a tensor
 - Save storage, computation time, memory bandwidth, reduce power
 - Extra HW cost for compression, decompression, schedule (limit the throughput and power/area overhead) "Sparsity Tax"

3D Tensor/ Cube

9

0

8

-5 0

2D Tensor/ Matrix

7

Sparsity on Convolution Kernels

- + Convolution Kernels can be converted to weight matrix
 - Filter sparsity
 - Shape sparsity
 - Channel sparsity

Sparsity is an Active Algorithm Research Area

Google & Deepmind paper, "Fast Sparse ConvNets"

- The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
- Networks (MIT) ICLR 2019 Best Paper
 - \rightarrow Any dense neural network contains one sparse neural network

Image Credit: Torsten Hoefler et.al, Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks

Type of Sparsity in ML Inference

=

Output

- + Static and Dynamic Sparsity
 - + Weight Sparsity
 - + Static Weight Sparsity (Pruning)
 - + Dynamic Weight Sparsity (Conditional)
 - + Activation Sparsity
 - + Contextual/Attention Sparsity (LLM)
 - + Feature Sparsity (CV)
- + Sparsity Granularity
 - + Coarse-granularity Sparsity
 - + Fine-grained Sparsity
- + Sparsity Patten
 - + Structured sparsity
 - + Unstructured sparsity

Sparse Matrix Storage Format

dense [0,2,0,0,3,4,0,0,0,0,0,5]		,0,5]	bitmap [010011000001 2345]	runlength / delta [1 2,2 3,0 4,5 5]	compressed sparse row [1] [1 2,2 3,0 4,5	/ column 5]	olumn coordinate offset [1 2, 5 3, 6 4, 12 5]		
1	ĺ	I							
	0%	10%		70%	90%	99.9%		99.99999%	
	dense		low sparsity	medium sparsity	moderate sparsity	high sparsit	У	extreme	

- + Bitmap
- + Run-length /delta
- + Compressed Sparse Row / Column (CSR/CSC)
- + Coordinate Offset (index, value)
- + Hierarchical Hybrid Sparse Format

Sparse Matrix Format: CSR and CSC Format

CSR Format

- Data: an array for all non-zero values
- Column_offsets[i]: records the actual column index of the data[i]
- Row_pointers[i]: records the number of non-zero of of all (i-1) rows

CSC Format

- Data: an array for all non-zero values
- Row_offsets[i]: records the actual row index of the data[i]
- Column_pointers[i]: records the number of nonzero of of all (i-1) columns

MOFFETT AI

Sparse Matrix Format: Coordinate Index and Hierarchical Hybrid Format

Coordinate Index Structured and Unstructured Sparsity

Hierarchical Hybrid Format Top-level: bit-vector format: (0, 1, 1, 0) Block-level: CSR/CSC/Coordinate Offset

Image Credit: Se Jung Kwon et. al, Structured Compression by Weight Encryption for Unstructured Pruning and Quantization

Activation Sparsity and Conditional Sparsity

- Sparse Input data or induced activation matrix based on activation functions (ReLU/Softmax)
- Dynamic Sparsity (run time)

+ Conditional Sparsity

- Conditions are normally calculated at runtime based on input
- Use the condition to decide the weight matrix patterns
 - block level
 - sub-model level (MoE)
- Use the condition to decide token correlation
 - Sparse Attention in LLM

Mixture of Experts (MoE)

Sparse Attention

MOFFETT AI

Activation Sparsity

ocal context

Outline

- Introduction to ML Inference
- Sparsity in ML Inference
- Hardware Software Co-design for Sparsity
- Case Studies: Sparsity Support in CPU, GPU and AI Chips
- Summary

Sparsity Tax and HW/SW Scenario

+ Sparsity Tax

- Extra storage overhead
- Extra decompression/compression overhead
- Model accuracy loss
- No wall-clock speedup or even slower without special sparse accelerators

+ Sparsity Support on devices

- CPU
- GPU
- AI Accelerators

III

Highly-sparse Matrix/Vector HPC field

Coarse-grained sparsity Fine-grained 2:4 Structure Sparsity

All sparsity type (Dynamic, Static, Structured, non-structured, finegrained, coarse-grained, conditional execution)

MOFFETT AI

Sparse Al Accelerator Architecture Design Consideration

+ Sparsity Support Impact on AI Accelerator Design

- Programming Model
- Scheduler (Data Flow)
- Memory Systems
- Tensor Core Processing Datapath

MOFFETT AI

Challenges in Designing Sparse Accelerators

Outline

- Introduction to ML Inference
- Sparsity in ML Inference
- Hardware Software Co-design for Sparsity
- Case Studies: Sparsity Support in CPU, GPU and AI Chips
- Summary

An Overview of Mainstream Al Accelerator Architecture

> Key buzz words: Systolic Array, Tensor Core, Vector Core, Many-core, DSA, Dataflow

> Special Technology AI Accelerators: Very efficient for specific applications, limited operator support

Sparsity Support CPUs

- + CPU offers thread-level parallelism and dense vector/matrix extension
 - Limited by low peak MAC performance of CPUs
 - Limited by SW for sparse matrix compress and decompress
 - Limit speedup for sparse matrix
 - Available Intel Sparse BLAS support

Neuralmagic's DeepSparse Inference Runtime on CPU

Sparsity Support on GPU Tensor Core – Micro-52 (2019)

MOFFETT AI

+ Weight Sparsity

- Structured
- Vector-wise Balanced Sparse Pattern
- + Minimal change to Volta GPU Tensor core
 - 75% sparsity with 1.49x speedup vs dense tensor core

Figure 5: An example of vector-wise sparse matrix encoding with L=8 and K=2. Two non-zero elements in a row vector are compressed into one compact vector associated with their indices. All row vectors are encoded to the same length. If a row vector has less non-zero elements than the compact vector length K, the empty entries are padded with zeros.

Nvidia Ampere/Hopper Sparse Tensor Core

Nvidia Ampere/Hopper Sparse Core Performance

Speedup on Matrix-Multiplication

Μ	Ν	K	Speedup	
1024	8192	1024	1.44x	
1024	16384	1024	1.73x	
4096	8192	1024	1.53x	
4096	16384	1024	1.78x	

Speedup on Convolution

Ν	С	K	H,W	R,S	Speedup	
32	1024	2048	14	1	1.52x	
32	2048	1024	14	1	1.77x	
32	2048	4096	7	1	1.64x	
32	4096	2048	7	1	1.75x	
256	256	512	7	3	1.85x	

NETWORK	DATA TYPE	SCENARIO	PERFORMANCE
PEDT Large		BS=256, SeqLen=128	6200 seq/s
DERT-Large	IN I O	BS=1-256, SeqLen=128	1.3X-1.5X
	ED16	BS=256	2700 images/second
DecNeVt 101 22v16d	r P T O	BS=1-256	Up to 1.3X
Resident-TOT_SZXTOO	INITO	BS=256	4400 images/second
	INTO	BS=1-256	Up to 1.3X

End to End Inference Speedup

Sparsity Support on TPUs – (ICS 2020)

+ TPU is difficult to support sparsity

- Static and fixed data-flow
- + Research on SparseTPU
 - Packing technique to condense sparse matrices
 - Still calculate some zeros and no reduce of memory footprint
 - Performance gain:
 - 16.08x and 4.39x and 19.79x lower energy (INT8/FP32)
 - Sparsity tax:
 - 12.93% area overhead
 - 4.14% energy overhead (FP32 TPU)

MOFFETT AI

Sparsity Support on TPUs: - (ICS 2020)

Figure 7: Microarchitecture and dataflow within a PE in different modes of operation. (a) Hold: The PE holds the accumulated result when the index mismatches. (b) Latch: The PE latches the input vector element when the input index matches (c) Accumulate: When the end of a vector group arrives, the PE calculates the MAC result and updates the Accu register of the rightward PE. (d) Bypass: If the matrix value held in the PE is 0, the data coming from leftward is bypassed rightward.

MIT Eyeriss Project – Eyeriss v1 (2016 ISSCC)

+ One of the earliest AI Accelerator chip

- A Spatial Multi-PE architecture
- Support Weight Sparsity by reducing memory footprint and bandwidth
- Saving power by clock gating PE for zero operands
- No wall-clock speedup

Fig. 12. PE architecture. The datapaths in red show the data gating logic to skip the processing of zero ifmap data.

MIT Eyeriss Project – Eyeriss v2 (2018)

+ Compared to Eyeriss v1

- A Scalable Architecture
- Change of matrix compressed format
- Dual-sparsity Support
- Wall-clock speedup

Global Buffer (GLB)	PE PE PE PE PE PE PE PE	2D Mesh Network GLB PE GLB PE GLB PE
	(a) Original Eyeriss	(b) Eyeriss v2

MIT Eyeriss Project – Eyeriss v2 (2018)

PS

<u>COC Compressed Data</u> .										
data vector:	{ a , b, c , d, e, f , g , h , i, j , k, l}									
count vector:	$\{1, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 0\}$									
address vector:	{0, 2, 5, 6, 6, 7, 9, 9, 12}									

Image Source: Yu-Hsin Chen et. al Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

EIE: Efficient Inference Engine on Compressed Deep Neural Network (2016)

+ One of the earliest AI Accelerator research

- A Spatial Multi-PE architecture
- Support dual sparsity by reducing memory footprint and bandwidth and save wallclock speedup
- Weight matrices: CSC format
- Proposed an activation buffer before different PEs for workload balance
- Use activation to lookup compressed weight

\vec{a}	(0	0	a_2	0	a_4	a_5	0	a_7)			_				
					×	<						\vec{b}				
PE0	($w_{0,0}$	0	$w_{0,2}$	0	$w_{0,4}$	$w_{0,5}$	$w_{0,6}$	0		(b_0		(b_0	1
PE1		0	$w_{1,1}$	0	$w_{1,3}$	0	0	$w_{1,6}$	0			b_1			b_1	
PE2		0	0	$w_{2,2}$	0	$w_{2,4}$	0	0	$w_{2,7}$			$-b_2$			0	
PE3		0	$w_{3,1}$	0	0	0	$w_{0,5}$	0	0			b_3			b_3	
		0	$w_{4,1}$	0	0	$w_{4,4}$	0	0	0			$-b_4$			0	
	ľ	0	0	0	$w_{5,4}$	0	0	0	$w_{5,7}$			b_5			b_5	
		0	0	0	0	$ w_{6,4} $	0	$w_{6,6}$	0			b_6			b_6	
		$w_{7,0}$	0	0	$w_{7,4}$	0	0	$w_{7,7}$	0	_		$-b_7$	ReLU		0	
		$w_{8,0}$	0	0	0	0	0	0	$w_{8,7}$	-		$-b_8$	-		0	
		$w_{9,0}$	0	0	0	0	0	$w_{9,6}$	$w_{9,7}$			$-b_9$			0	
		0	0	0	0	$w_{10,4}$	0	0	0			b_{10}			b_{10}	
		0	0	$w_{11,2}$	0	0	0	0	$w_{11,7}$			$-b_{11}$			0	
		$w_{12,0}$	0	$w_{12,2}$	0	0	$w_{12,5}$	0	$w_{12,7}$			$-b_{12}$			0	
		$w_{13,0}$	$w_{13,2}$	0	0	0	0	$w_{13,6}$	0			b_{13}			b_{13}	
		0	0	$w_{14,2}$	$w_{14,3}$	$w_{14,4}$	$w_{14,5}$	0	0			b_{14}			b_{14}	
	(0	0	$w_{15,2}$	$w_{15,3}$	0	$w_{15,5}$	0	0)	(-	$-b_{15}$		$\left(\right)$	0)

Figure 2. Matrix W and vectors a and b are interleaved over 4 PEs. Elements of the same color are stored in the same PE.

Virtual Weight	W _{0,0}	W _{8,0}	W _{12,0}	W _{4,1}	W _{0,2}	W _{12,2}	W _{0,4}	W _{4,4}	W _{0,5}	W _{12,5}	W _{0,6}	W _{8,7}	W _{12,7}
Relative Row Index	0	1	0	1	0	2	0	0	0	2	0	2	0
Column Pointer	0	3	4	6	6	8	10	11	13				

Figure 3. Memory layout for the relative indexed, indirect weighted and interleaved CSC format, corresponding to PE_0 in Figure 2.

EIE uArch

(a) The architecture of Leading Non-zero Detection Node. (b) The architecture of Processing Element. Figure 4.

Alibaba Hanguang-800 Sparsity Engine (2020)

- + A High-performance Commercial Data-center Inference Chip
 - DSA architecture
 - Support weight compression in memory to reduce memory footprint
 - No external DDR and allon-chip Memory
 - Weight matrices: bitvector representation for low to medium sparsity
 - No wall-clock speedup

Compressed and Quantized Storage/Processing

from CB

9/27

MOFFETT AI

SambaNova RDU Sparsity Support

+ A Reconfigurable Dataflow tiled Architecture (RDU series)

- Scalable design with on-chip switch connect array of RDUs and memory units
- Scale-out support
- Support CSR-like matrix compression
- Wall clock-time speedup

Sparse Matrix Multiply on RDU

Cerebras Sparsity Support

MOFFETT AI

- Fine-granularity fully unstructured sparse
 MatMul
- + 10x sparse utilization vs. GPU
- + Not clear on the weight sparse storage format

Cerebras Architecture Deep Dive: First Look Inside the HW/SW Co-Design for Deep Learning, Hotchips 2022

Recent Industry Trends on Sparse Transformers

- + A One-shot post-training sparse methods
- + 50% sparsity to deploy on A100/H100 GPU

сние s Image credit: https://neuralmagic.com/blog/sparsegpt-remove-100-billion-parameters-for-free/

Recent Industry Trends on Sparse Transformers

- + Company: Cerebras
- + GPT-3 XL 1.3B parameter model with 84% sparsity
 - 3x fewer inference FLOPS
 - 4.3x fewer parameters
 - No loss in accuracy

Summary

+ Sparsity is an active research area

- Promising direction for both Vision and LLM
- Save computation, memory bandwidth/capacity and power
- Reduce TCO
- + The memory storage format is the key for hardware support of sparsity
 - Affected by algorithm (sparsity ratio, accuracy)
 - Impact on:
 - Memory system design
 - Datapath design
 - Scheduler design
- + Sparse AI Accelerator needs trade off on more dimension
 - Model Accuracy
 - Sparsity overhead
 - Sparsity benefits
- + Research and commercial AI accelerators are embracing sparsity support

MOFFETT AI

Moffett Deep-Sparse Al Inference chip will be presented at Tuesday Afternoon Session

Thank you and Questions?

