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A Brief History of AI Models 
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* Source: Partly from Hoi-Jun Yoo, ISSCC 2019



A Brief History of LLMs (2019 – 2023)
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*image credit: Wayne Xin Zhao, et.al, “A Survey of Large Language Models”



Introduction to ML Inference

+ ML Model Operations Converges to a small subset of operators 

– ONNX v1.15.0 (192 Operators)

– Key operators:

 >90% of Number of Parameters and Computation FLOPS

 Convolution, Matrix Multiplication, Inner Product, Element-wise 
Addition, Mean, Reshape, etc.
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ResNet50: Conv, Matrix Multiplication, Pooling, ReLU
Transformer: Matrix Multiplication, Element-
wise Operations, GELU, Softmax, Embedding 
Lookup, etc.
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Sparsity ML Inference

+ The core of ML inference  is Tensor Algebra

– Tensor format,  E.g., a typical 4D tensor (NHWC) in image 
processing

+ Sparsity in ML Inference

– Zero naturally exist or can be induced in Tensors 

– No need to store zero or compute zero in a tensor

  Save storage, computation time, memory bandwidth, 
reduce power

  Extra HW cost for compression, decompression, 
schedule (limit the throughput and power/area 
overhead) “Sparsity Tax” 
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0D Tensor/ Scalar



Sparsity on Convolution Kernels 
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+ Convolution Kernels can be converted 
to weight matrix

– Filter sparsity

– Shape sparsity

– Channel sparsity



Sparsity is an Active Algorithm Research Area
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• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural 

Networks (MIT) – ICLR 2019 Best Paper

→ Any dense neural network contains one sparse neural network

Image Credit: Torsten Hoefler et.al, Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
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Type of Sparsity in ML Inference
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+ Static and Dynamic Sparsity

+ Weight Sparsity 

+ Static Weight Sparsity (Pruning)

+ Dynamic Weight Sparsity (Conditional)

+ Activation Sparsity 

+ Contextual/Attention Sparsity (LLM)

+ Feature Sparsity (CV)

+ Sparsity Granularity

+ Coarse-granularity Sparsity

+ Fine-grained Sparsity

+ Sparsity Patten 

+ Structured sparsity  

+ Unstructured sparsity

X =

Weight/Activation Activation Output



Sparse Matrix Storage Format
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+ Bitmap

+ Run-length /delta

+ Compressed Sparse Row / Column (CSR/CSC)

+ Coordinate Offset (index, value)

+ Hierarchical Hybrid Sparse Format 

Image Credit: Torsten Hoefler et.al, Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks



Sparse Matrix Format: CSR and CSC Format
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CSR Format
• Data: an array for all non-zero values
• Column_offsets[i]: records the actual column index 

of the data[i]
• Row_pointers[i]: records the number of non-zero 

of of all (i-1) rows

CSC Format
• Data: an array for all non-zero values
• Row_offsets[i]: records the actual row index of the 

data[i]
• Column_pointers[i]: records the number of non-

zero of of all (i-1) columns 



Sparse Matrix Format: Coordinate Index and Hierarchical Hybrid Format

13Image Credit: Se Jung Kwon et. al, Structured Compression by Weight Encryption for Unstructured Pruning and Quantization 

Hierarchical Hybrid Format
Top-level: bit-vector format: (0, 1, 1, 0)
Block-level: CSR/CSC/Coordinate Offset  

Coordinate Index
Structured and Unstructured Sparsity



Activation Sparsity and Conditional Sparsity 

+ Activation Sparsity
– Sparse Input data or induced activation matrix 

based on activation functions (ReLU/Softmax)

– Dynamic Sparsity (run time)

+ Conditional Sparsity 
– Conditions are normally calculated at runtime 

based on input

– Use the condition to decide the weight matrix 
patterns 

 block level

 sub-model level (MoE)

– Use the condition to decide token correlation 

 Sparse Attention in LLM
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Activation Sparsity

Sparse Attention

FFN0 FFN1 FFN2 FFN3

Router

Mixture of Experts (MoE)
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Sparsity Tax and HW/SW Scenario

+ Sparsity Tax

– Extra storage overhead  

– Extra decompression/compression overhead

– Model accuracy loss

– No wall-clock speedup or even slower without 
special sparse accelerators

+ Sparsity Support on devices

– CPU

– GPU

– AI Accelerators
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Highly-sparse Matrix/Vector
HPC field

Coarse-grained sparsity
Fine-grained 2:4 

Structure Sparsity

All sparsity type 
(Dynamic, Static, Structured, non-structured, fine-

grained, coarse-grained, conditional execution)



Sparse AI Accelerator Architecture Design Consideration 
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+ Sparsity Support Impact on AI Accelerator Design 

– Programming Model

– Scheduler (Data Flow)

– Memory Systems

– Tensor Core Processing Datapath



Challenges in Designing Sparse Accelerators
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Architecture/Algorithm Co-design
Application Requirements

Cost to Retrain
Time-to-Market

Decompression/compression
Workload Imbalance

Area and power overhead

Model 
Accuracy

Sparsity 
Tax

 

  Benefits
 

Design
Trade-off

TCO Saving
Wall-clock speedup  

Power saving
Area Saving (memory, die size)
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An Overview of Mainstream AI Accelerator Architecture 
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 CPU (X86, RISC-V): Vector/Matrix Instruction Extension
 Nvidia Tensor Core: 4x4 GEMM
 Huawei Ascend: 16x16 GEMM + VPU
 Google TPU: Systolic Array + VPU 
 Graphcore: Massively Parallel BSP Cores
 SambaNova: Dataflow RDU 
 Cerebras: Wafer-scale many-core architecture  
 Habala Labs/Intel Spring Hill: DSP Array + GEMM  
 Cambricon/Hanguang 800/NVDLA/Tesla FSD: DSA Accelerators

Popular AI 
Accelerators

 Spiking Neural Nets and Neuromorphic Architectures
 Resistor/Memristor matrices and Analog Computing
 Optical and Spintronics Implementations 

Special 
Technology

AI Accelerators

 Key buzz words: Systolic Array, Tensor Core, Vector Core, Many-core, DSA, Dataflow  

 Special Technology AI Accelerators: Very efficient for specific applications, limited operator support



Sparsity Support CPUs

21
Image Source: https://github.com/neuralmagic/deepsparse

+ CPU offers thread-level parallelism and dense 
vector/matrix extension

– Limited by low peak MAC performance of CPUs  

– Limited by SW for sparse matrix compress and 
decompress  

 Limit speedup for sparse matrix

 Available Intel Sparse BLAS support

Neuralmagic’s DeepSparse Inference Runtime on CPU



Sparsity Support on GPU Tensor Core – Micro-52 (2019)
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Image Source: Maohua Zhu et. al, Sparse Tensor Core: Algorithm and Hardware Co-Design for Vector-wise Sparse Neural Networks on Modern GPUs

+ Weight Sparsity

– Structured

– Vector-wise Balanced Sparse Pattern

+ Minimal change to Volta GPU Tensor 
core

– 75% sparsity with 1.49x speedup vs 
dense tensor core



Nvidia Ampere/Hopper Sparse Tensor Core
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Image Source: Nvidia website



Nvidia Ampere/Hopper Sparse Core Performance 
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Data Source: Nvidia website

Speedup on Matrix-Multiplication
Speedup on Convolution

End to End Inference Speedup



Sparsity Support on TPUs – (ICS 2020)
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Image Source: Xin He, Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices, ICS 2020

+ TPU is difficult to support sparsity
– Static and fixed data-flow

+ Research on SparseTPU
– Packing technique to condense sparse 

matrices

– Still calculate some zeros and no reduce 
of memory footprint

– Performance gain:

 16.08x and 4.39x and 19.79x lower 
energy (INT8/FP32)

– Sparsity tax:

 12.93% area overhead

 4.14% energy overhead (FP32 TPU)



Sparsity Support on TPUs:  – (ICS 2020)
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Image Source: Xin He, Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices, ICS 2020)



MIT Eyeriss Project – Eyeriss v1 (2016 ISSCC)
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Image Source: Yu-Hsin Chen et. al Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks

+ One of the earliest AI Accelerator chip

– A Spatial Multi-PE architecture

– Support Weight Sparsity by reducing
memory footprint and bandwidth

– Saving power by clock gating PE for zero 
operands

– No wall-clock speedup



MIT Eyeriss Project – Eyeriss v2 (2018)
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Image Source: Yu-Hsin Chen et. al Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

+ Compared to Eyeriss v1

– A Scalable Architecture

– Change of matrix compressed format

– Dual-sparsity Support

– Wall-clock speedup



MIT Eyeriss Project – Eyeriss v2 (2018)
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Image Source: Yu-Hsin Chen et. al Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices



EIE: Efficient Inference Engine on Compressed Deep Neural Network (2016)
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Image Source: Song Han et. al, EIE: Efficient Inference Engine on Compressed Deep Neural Network

+ One of the earliest AI Accelerator research

– A Spatial Multi-PE architecture

– Support dual sparsity by reducing memory
footprint and bandwidth and save wall-
clock speedup

– Weight matrices: CSC format

– Proposed an activation buffer before 
different PEs for workload balance

– Use activation to lookup compressed 
weight



EIE uArch
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Image Source: Song Han et. al, EIE: Efficient Inference Engine on Compressed Deep Neural Network



Alibaba Hanguang-800 Sparsity Engine (2020)
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Source: Hanguang 800 NPU – The Ultimate AI Inference Solution for Data Centers, Hotchips 2020

+ A High-performance 
Commercial Data-center 
Inference Chip

– DSA architecture

– Support weight 
compression in memory to 
reduce memory footprint

– No external DDR and all-
on-chip Memory

– Weight matrices: bit-
vector representation for 
low to medium sparsity

– No wall-clock speedup 



SambaNova RDU Sparsity Support
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* Source: SambaNova SN10 RDU: Accelerating Software 2.0 with Dataflow, Hotchips 2021

+ A Reconfigurable Dataflow 
tiled Architecture (RDU 
series)

– Scalable design with on-chip switch 
connect array of RDUs and memory 
units 

– Scale-out support

– Support CSR-like matrix
compression

– Wall clock-time speedup



Cerebras Sparsity Support
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Cerebras Architecture Deep Dive: First Look Inside the HW/SW Co-Design for Deep Learning, Hotchips 2022

+ A commercial data-flow 
wafer-scale spatial 
architecture

+ Fine-granularity fully
unstructured sparse 
MatMul

+ 10x sparse utilization vs. 
GPU

+ Not clear on the weight 
sparse storage format 



Recent Industry Trends on Sparse Transformers
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Image credit:  https://neuralmagic.com/blog/sparsegpt-remove-100-billion-parameters-for-free/

+ A One-shot post-training sparse methods

+ 50% sparsity to deploy on A100/H100 GPU 



Recent Industry Trends on Sparse Transformers
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Image credit:  Cerebras website

+ Company: Cerebras

+ GPT-3 XL 1.3B parameter model with 84% sparsity

– 3x fewer inference FLOPS

– 4.3x fewer parameters

– No loss in accuracy  



Summary

37

+ Sparsity is an active research area
– Promising direction for both Vision and LLM

– Save computation, memory bandwidth/capacity and power

– Reduce TCO 

+ The memory storage format is the key for hardware support of sparsity
– Affected by algorithm (sparsity ratio, accuracy)

– Impact on:
 Memory system design

 Datapath design

 Scheduler design

+ Sparse AI Accelerator needs trade off on more dimension
– Model Accuracy

– Sparsity overhead

– Sparsity benefits

+ Research and commercial AI accelerators are embracing sparsity support



Moffett Deep-Sparse AI Inference chip will be presented at 
Tuesday Afternoon Session

Thank you and Questions?


