

HyperAccel Latency Processing Unit (LPUTM) Accelerating Hyperscale Models for Generative Al

Seungjae Moon, Junsoo Kim, Jung-Hoon Kim, Junseo Cha, Gyubin Choi, Seongmin Hong, and Joo-Young Kim HyperAccel, Hwaseong-si, Republic of Korea

Introduction

- The fundamental goal of AI is to create human-like intelligence. Generative AI has enabled AI to do what we thought was innate to only humans: show creativity.
- Transformer-based large language models (LLM) with multi-billion parameters, such as OpenAl GPT, Meta LLaMA, can create original texts and visual contents.
- For efficient model Inference, a latency-oriented and scalable hardware for small-batch memory-intensive workloads is required to meet the needs of different users
- Latency Processing Unit, the world-first hardware accelerator dedicated for the end-to-end inference of LLM.

LPUTM Architecture

- Connects all channels of high bandwidth memory to the execution engines with datapath that exactly matches the incoming bandwidth
- Utilizes hardware-aware memory mapping and tiling to remove the need for any data reshaping and switching
- Consists of low-latency and high-throughput custom multiply-accumulate (MAC) trees, multi-precision arithmetic function unit, and special function units
- Out-of-order scheduling to allow simultaneous execution of independent matrix and vector operations for maximum hardware utilization
- Achieves effective bandwidth usage of 90% during end-to-end LLM inference

Illustration of Attention Operation

Expandable Synchronization Link (ESL)

- Lightweight full-duplex peer-to-peer (P2P) communication technology that performs data synchronization with low latency and latency hiding
- Low-latency by minimal packet overhead, direct path I/O, and short dataflow
- Latency-hiding by custom protocol that enables execution and data synchronization to continuously run in tandem to hide all sync overhead except the tail-latency

IP Products

- Highly flexible to reconfigure both memory types and compute resources for low-power and high-performance (baseline: GDDR with 16 lanes x 64 vector dimension MAC trees in SXE)
- Low-power: scale down memory bandwidth to that of LPDDR with fewer MAC trees in SXE
- High-performance: scale up memory bandwidth to that of HBM with more MAC trees in SXE

HyperDex Software Stack

- Bridges LPU platform at the application-level through standard API
- Supports various LLMs, such as GPT, OPT, LLaMA, and their variants
- Intra-layer parallelism of model parameters for parallelizable operations
- Optimal memory allocation and alignment of model parameters
- Parallel instruction chaining for minimum control overhead

Performance Results

SYSTEM SPECIFICATIONS

Millisecond (7.2ms) to generate an output token during GenAl inference

Н	yperAccel Orion	
Server Information		
Accelerator	8x Latency Processing Unit	16x Latency Processing Unit
HBM Total Bandwidth	3.68 TB/s	7.36 TB/s
HBM Memory Capacity	128 GB	256 GB
DSP Slice	72K	144K
Performance	13.9 ms per output token	7.2 ms per output token
System Power Usage	1.4 kW max	2.9 kW max
Form Factor	PCIe single slot	
Architecture	Streamlined Memory Access, Streamlined Execution Engine	
Network	Expandable Synchronization Link 2x QSFP28, 2x100Gb/s	
Software	HyperDex framework	
Generative AI Service		
Service	Transformer-based natural language generation	
Supported Model	GPT, OPT, LLaMA, and their variants	
Model Size	Up to 100 Billion parameters	
API	OpenAI-based	
Simultaneous Access	1-16 clients	

	NVIDIA DGX A100	HyperAccel Orion
Accelerator		
	8 x A100	16 x U55C
	80 GB, 2,039 GB/s HBM	16 GB, 460 GB/s HBM
	600 GB/s NVLink	100 Gbit/s QSFP28
Maximum Power	3,200 W	2,400 W
Cost	\$119,992 (1 GPU = \$14,999)	\$75,952 (1 FPGA = \$4,747)
Performance	93.9 tokens/s ×1.	49 139.8 tokens/s
Performance /cost	782.5 tokens/s/milion\$ ×2.	35 1,840.6 tokens/s/milion\$

- HyperAccel Orion (16 LPUs), HyperDex vs. NVIDIA DGX A100 (8 GPUs), FasterTransformer
- GPT3-20B, 32-input/128-output text generation
- Orion achieves **7.2ms per output token** (~140 tokens per second)
- Orion achieves 1.76x scalability for doubling the number of devices (vs. 1.39x of DGX A100)
- Orion achieves 1.49x speedup and 2.35x cost-effectiveness compared to DGX A100