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Abstract

With the slowdown of Moore’s law, the scenario diversity of specialized computing, and the

rapid development of application algorithms, an efficient chip design requires modularization,

flexibility, and scalability. In this study, we propose a Chiplet-based deep learning accelerator

prototype that contains one HUB Chiplet and six extended SIDE Chiplets integrated on an RDL

layer for the 2.5D package. The SIDE and the HUB contain one and four AI cores, respectively.

Given that our Chiplet-system targets diverse scenarios via scalable connected SIDE Chiplets,

we need to handle three challenges: a) devise a flexible architecture design supporting diverse

shapes, b) search for a workload mapping with low die-to-die communication, and c) adopt a

high-bandwidth die-to-die interface to maintain efficient data transfer.

This study proposes a flexible neural core (FNC) featuring dynamic bit-width computing and

flexible parallelism. Next, we use a hierarchy-based mapping scheme to decouple different

parallelism levels and help analyze the communication. A 12Gbps D2D interface is introduced to

achieve 192Gb/s bandwidth per D2D port with 1.04pJ/bit efficiency and 55μm bump pitch.

The proposed seven-Chiplet accelerator achieves a peak performance of 10/20/40 TOPS for

INT16/8/4. When enabling 0~6 SIDE Chiplets, the system power ranges from 4.5W to 12W. The

power efficiency of the FNC is 2.02TOPS/W while that of the overall system is 1.67TOPS/W.
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Background and Challenges
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Background and Challenges
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◼ Decouple a monolithic SoC into Chiplets

• Better die yield

• Scalability for diverse scenarios

• Rapid development pace to deliver new productsNoC
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◼ Challenges

Scenario1: Mobile
Low-Res, small filter 

Scenario2: Surveillance
High-Res, large batch

Scenario3: Automotive
High-Res, large channel

Challenge-1

Flexible architecture design 

supporting diverse shapes

Hub-Core Side-Core

mapping

Challenge-2

Efficient workload mapping to 

optimize Die-to-Die 

communication

D2D

D2D Challenge-3

High-bandwidth D2D and 

high-density package 
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Overall Architecture
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◼ Flexible Neural Core (FNC)
• Reconfigurable architecture

for the shape diversity
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Mapping workflow

◼ Mapping dataflow
• Die-to-Die communication-

aware workload generator

◼ Interconnection
• High-bandwidth Die-to-Die

based on 2.5D package

• Efficient chiplet routing unit

(CLRU)

HUB Chiplet

Side Chiplet
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Flexible Neural Core
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◼ Flexible Interconnect
• Arbitrary tile-based workload assignment to 8 cores via a configurable interconnect fabric

◼ MAC array with Dynamic Bit-width
• Support INT4/8/16 with full bandwidth

utilization of a tensor core

◼ Configurable Weight Buffer
• Configured for NUMA/UMA mode for

arbitrary workload assignment
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Flexible Neural Core

◼ The MAC Pair Supporting for Dynamic Bit-width
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• Support three quantization modes

➢ 8b-Acitvation × 4b-Weight

➢ 8b-Acitvation × 8b-Weight

➢ 16b-Acitvation × 8b-Weight

• Each INT-8 MAC-Pair has eight
4×4 multipliers for mode reuse

• In three modes, the bandwidth

and compute resources of one

MAC-pair are fully utilized
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Flexible Neural Core

◼ Flex-Interconnect and Configurable Weight Buffer

Private Local Buffer

Duplication for shared

data

Low access latency

Unified into a pool to share data

Weight-stationary in each PE to overlap 

weight-loading in local registers
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3. Quad-NUMA, each bank for 4 cores
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4. Full-NUMA, each bank for 8 cores

• Support diverse eight-PE compositions

➢ 8-tile mode: share weights across 8 PEs

for independent output in height/width

➢ 4-tile mode: share weights across 4 PEs

and 2 4-PE groups process 2 chunks of

output channels

➢ 2-tile mode: 4 2-PE groups for 4 chunks

of output channels

➢ 1-tile mode: 8 PEs for 8 chunks of output

channels
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Each bank has 16 sub-banks for 16 columns of MACs
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Dynamic Workload Parallelism

for c2 = [0 : C2):
for h2 = [0 : H2):

for w2 = [0 : W2):
for h1 = [0 : H1):

for w1 = [0 : W1):
for c1 = [0 : C1):

Example-2 for the W-Buf analysis

for h2 = [0 : H2):
for w2 = [0 : W2):

for c2 = [0 : C2):
for h1 = [0 : H1):

for w1 = [0 : W1):
for c1 = [0 : C1):

Reuse Region Critical Positions

Example-1 for the W-Buf analysis

for c2 = [0 : C2):
for h2 = [0 : H2):

for w2 = [0 : W2):
for h1 = [0 : H1):

for w1 = [0 : W1):
for c1 = [0 : C1):

for h2 = [0 : H2):
for w2 = [0 : W2):

for c2 = [0 : C2):
for h1 = [0 : H1):

for w1 = [0 : W1):
for c1 = [0 : C1):

Example-3 for the L1-Buf analysis

• Critical Position for the “X” buffer: the
inner-most loop related to the index of the
X-buffer data (decide the data size on-core)

• Reuse Region for the “X” buffer: indicate
the reuse efficiency when caching the data
in inner loops decided by critical position

• Search for an optimized loop range with
the highest memory utilization (the largest
data size that can be buffered on-core) and
reuse efficiency for each buffer

// Package-Level for Chiplet Parallelism
(HOt, WOt, COt) = temporal(spatial(HO, WO, CO))

for c2 = [0 : C2):

for h2 = [0 : H2):     // H2 * HOt = HO

for w2 = [0 : W2):    // W2 * WOt = WO

for c2 = [0 : C2):   // C2 * COt = CO

// Chiplet-Level for PE Parallelism
(HOC, WOC, COC) = temporal(spatial(HOt, WOt, COt))

for c1 = [0 : C1):

for h1 = [0 : H1):    // H1 * HOc = HOt
for w1 = [0 : W1):   // W1 * WOc = WOt
for c1 = [0 : C1):  // C1 * 8 = COt

Loop order in the temporal primitive

Notation:HO, WO, CO: height, width, and channel of the output tensor; Xt: the tile for a Chiplet; Xc: the sub-tile for a PE

Example-4 for the L1-Buf analysis

Chiplets @Package

(10 cores in 7 Chiplets)

PEs @FNC (Core)

(8 Flexible Tensor PEs )

MACs @PE
(8×16 MAC array)

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

(HOt,WOt,COt)=

temporal(spatial(HO,WO,CO))

For

FNC-0

For

FNC-1

…

For

PE-0

For

PE-1

For

PE-2

For

PE-3

HO×WO×CO
1 execution for a FNC

HOt×WOt×COt

HOt×WOt×COt

1 execution for a PE
HOc×WOc×COc

(HOc,WOc,COc)=

temporal(spatial(HOt,WOt,COt))

Primitive(HOp=1,WOp=1,COp=16)=

temporal(spatial(HOc,WOc,COc))

CO=0 CO=1 CO=15…

CI0

O1 O15…

CI0

CI7

…

Weight-Stationary to 

reduce data access 

latency from the

buffer pool

Low Data 

Dependency 

Partitioning

Medium Data 

Dependency 

Partitioning

High Data 

Dependency 

Partitioning

high data access overhead

low data access overhead

The overhead bias helps to search for a low 

D2D communication mapping
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Chiplet Interconnection and Package

D2D PHY

D2D Ctrl.

Bandwidth

per D2D

RX: 192Gb/s

TX: 192Gb/s

RX(TX) Lane 2(2)

Data width per lane 8bit

Data Rate 12Gbps

Bump Pitch 55μm Package 2.5D

Area 2.2×0.5mm Power 1.04pJ/bit

Config RegAPB APB BUS

FIFO 0

FIFO 1

FIFO 2

FIFO 3

AXI-M AXI-SAXI BUS AXI BUS

4K Boundary 

Processing
Data ParserAXI-S AXI-MAXI BUS AXI BUS

◼ High-Bandwidth D2D Interface ◼ Chiplet Router Unit (CLRU)

• Four FIFO queues to deal with burst transfer

• Data parser: support the data request from

another Chiplet (access memory / other CLRU)

➢ The head packages indicate the transfer mode

CLRU TO D2DTO HUB
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Chiplet Interconnection and Package
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• Non-conflict IO layout in the HUB Chiplet to improve the fan-out efficiency

• 2.5D integration with a high-density 65nm RDL layer providing 55μm bump pitch

• The RDL layer contributes to a simpler 8-layer substrate of 3-2-3

Substrate RDL Layer
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Software Stack

Pre-Integrated Solutions

Model Zoo NN APIsNN-Profiler

Rule Checker

PyTorch TensorFlow PaddlePaddle ONNX

Model Optimization (quantization, pruning, op-tuning)
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Graph Optimization Scheduler Dev-AIDS

IR Gen. Code Gen.

Acc. Analyzer Func/Cyc-Simulator

Testbench Design ExplorerNN Lib.

Chip
Enablement

Supported
Frameworks

Application
Enablement

Latency-Constraint
Optimization

Sample-per-Sec
Optimization

Query-Per-Sec
Optimization

Response Time
Optimization

➢ Core-level task 
scheduling

➢ Batch-level 
Parallelism

➢ Workload pipeline 
for high throughput

➢ Multi-level 
parallelism for 
high utilization
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Evaluation
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System Board and Demo

Model 4: DeepLab v3+

Model 1: VGG-16 Model 2: YOLO v5s Model 3: ResNet50

◼ Demo for running concurrent 4 models◼ System PCIe-based Board

Host Communication 

for offloading workloads

2GB GDDR6

AI

Chip

For the cooling module
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Chip Summary
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HUB Chiplet
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RDL Layer for 2.5D Package

Items Specifications

Technology CMOS 12nm

Die Area
HUB Chiplet 8.5mm × 6.8mm = 57.8mm²

SIDE Chiplet 3.5mm × 2.8mm = 9.8mm²

Supply Voltage 0.8V ~ 1.2V

Frequency 100MHz – 1GHz

Peak 

Performance

INT4 40TOPS (8b-A × 4b-W)

INT8 20TOPS (8b-A × 8b-W)

INT16 10TOPS (16b-A × 8b-W)

NPU Core Efficiency 2.02TOPS/W

Power 4.5W ~ 12W

D2D Bandwidth 6×24GB/s for TX/RX

External Memory Bandwidth 64GB/s (GDDR6)

Bump Pitch for 2.5D Pkg 55μm

GDDR6

FNC-3

FNC-2

FNC-1

FNC-0

PCIe

FNC

PLLHOST
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2

D

D
2

D

D
2

D
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Comparison with Prior Multi-Chiplet Accelerator Works

Simba

(NVIDIA)

CHIMERA

(Stanford)

NetFlex

(A*STAR)
Ours

Year 2019 2021 2022 2023

Technology 16nm 40nm 22nm 12nm

Area 6mm² 29.2mm² 11.1mm²
HUB: 57.8mm²

Side: 9.8mm²

Memory Size 752KB SRAM
0.5MB SRAM

2MB RRAM
2492KB SRAM

HUB: 1.7MB

Side: 439KB

Voltage 0.42V ~ 1.2V 1.1V 0.6V ~ 0.89V 0.8V ~ 1.2V

Frequency 161MHz – 2001MHz 200MHz 190.3 – 492.3MHz 600MHz – 1.2GHz

Power 30 – 4160mW 126mW 57.6 – 499.8mW
Side: 0.72W

Hub: 4.75W

Performance

(TOPS)
0.32 – 4.01 (INT8) 2.2 (INT8, FP16) 0.41 – 1.07 (INT16)

Side Die: 1/2/4 for INT16/8/4,

Hub Die: 4/8/16 for INT16/8/4,

Total: 10/20/40 for INT16/8/4

Package Organic MCM PCB HD-FOWLP 2.5D RDL

D2D I/O GRS C2C Links AIB 12Gbps Parallel Interface

I/O Energy 0.82 – 1.75pJ/b 77pJ/b 3.07pJ/b 1.04pJ/bit
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Thank You

tanzh@mails.tsinghua.edu.cn

A Scalable Multi-Chiplet Deep Learning Accelerator with Hub-Side 2.5D Heterogeneous Integration


