MLSoC™ - An overview

Hot Chips 35, August 28-29, 2023

Srivi Dhruvanarayan, Victor Bittorf
Our Vision: Effortless machine learning for the embedded edge

Run any computer vision application, any network, any model, any framework, any sensor, any resolution.

Wide variety of end2end CV applications; Customers can customize applications for performance or power; Sensor connections; Accuracy and common operator support

Any

10x

Application

Efficient ML handling: Tile architecture. Supports batch processing, large tensors, concurrent models and fast context switching.

Scheduling: All operations efficiently pipelined and scheduled across Decoder, CVU, MLA and Arm App processor with fast context switching

Performance

Data handling: On chip decoder/encoder, compliant with AVC, HEVC, and MJPEG

Pre/Post processing: Dedicated CVU and application processor blocks enabling data to stay on chip for the entire pipeline

Efficient static scheduling: Maximize compute while minimizing data movement; High utilization of MLA Tiles

Low power

Quantization scheme: Patented low-power scheme that retains accuracy

Fully INT8 inference: 100% of total compute dedicated for INT8 inference

Patented cache usage: System power significantly reduced due to lower DDR traffic by retaining activations inside the SoC

Low code productization; Ready to use models, production ready platforms and dev kits

Pushbutton
SiMa.ai key innovations

Highly flexible ML accelerator
- **Fully programmable MLA**
- SW controlled data movement, scheduling & synchronization
- Supports full complement of CV applications at lowest power

ANY and 10x
- **Secure, self-contained SoC**
- Seamless heterogeneous compute
- Optimized end-to-end SoC pipeline
- Enables ML capabilities for legacy apps; future proofs applications
- Highly optimized building blocks enable best in class end-to-end performance

Pushbutton
- **Simple to develop & deploy**
- Effortless customer integration
- Low code customer evaluation
- Low code ML
- Customers can develop & deploy applications without having to understand details of HW

Vision Development Platform (VDP)
- Allows customers to build apps without having to write code

Effortless customer integration

Low code customer evaluation

Low code ML

Customers can develop & deploy applications without having to understand details of HW

Vision Development Platform (VDP)

Allows customers to build apps without having to write code
Purpose built for ML edge at embedded edge

Acquire ANY Data
- PCIe Gen4, 1GB Ethernet
- Dedicate: I2C, SPI, GPIO, SDIO

10X ML Processing
- Video, CV & ML Processors
- ML Accelerator - 50 TOPS INT8
- Quad Vector DSP - 600 GOPS
- HW video encode/decode
- 16GB LPDDR4

Decide, Control & Update
- Quad A65E ARM8.3
- Dedicated secure boot processor

MLSoC™ Machine Learning System-on-Chip

- TSMC - 16nm
- TDP - 15-20W
- Typical ML Workloads, CV Pipelines - 8-10W
Silicon Overview - 10x Performance for CV Processing

CV Processor

400 GFLOPS
600 INT16 GOPS

Key Benefits:
- Quad Vector DSPs optimize pre/post processing
- Each Vector DSP has 512b VLIW processor

Multicore Complex
- 4 EV74 Vector DSP cores @ 800MHz
- Coherent, symmetric multiprocessing

Shared Memory
 - Total 2MB local storage
 - 8 banks, each 32K x 64bit

System bus masters
 - Two AXI3 masters for CPU instruction fetch and data traffic
 - Four AXI3 masters for integrated DMA

Debug Features
 - SiMa debug register group
 - ARConnect debug architecture
 - Interrupt Distribution Unit

EV74 DSP Core: RISC with SIMD
- Level 1 Caches
 - L1 instruction 64KB, 4 ways
 - L1 data 64KB
 - Dedicated 2KB coherency lookup (four 256x25)

Debug Features
 - Trace memory, 4KB
 - APB slave access

Vector Memory 256KB
Silicon Overview - 10x Performance for ML Processing

Machine Learning Accelerator

50 INT8 TOPS

10x10 Array

Decompression Engine
DMA
Decompression Engine
DMA
Decompression Engine
DMA
Decompression Engine
DMA

60GB/s B/W

16GB LPDDR4

1 GHz Tile + L1 256KB

DMA Instruction Manager SRAM ARM M4

50 INT8 TOPS
SiMa.ai MLA innovations

- Unique matrix processor architecture
- Microarchitecture optimizations
- Novel convolution algorithm
- Compiler driven statically scheduled mesh
- ML compiler: Radically new approach and design
- SW managed memory hierarchy
Flexible Application Processor
- Quad A65 ARM8.3 ISA + FPU @1 GHz
- I$:32K/D$:32K/L2:128K/L3:512K
- Coherent Cache
- Coherent Mesh Network
- Secure Boot Core
- Safety, Security, Debug

Key Benefit:
- Entire application, not just ML
- Embedded appliance size

Eliminate
- PC and x86 Blade Servers
- Multi-Purpose HW
- Nonsecure OS & Client SW

Silicon Overview - 10x Performance for Application Processing
MLPerf: SiMa.ai delivers advantage over NVIDIA

SiMa.ai MLSoC (N16) compiled results unseat Orin (8nm) on both performance and power

Purpose built
Low power + small area

General purpose (GPU)
High power + large area

SiMa.ai MLSoC
100% of total TOPS dedicated to power optimized INT8 inference; 35MB of dedicated MLA memory

NVIDIA
37% of total TOPS dedicated to power optimized INT8 inference; 9.2MB of GPU cache*

1 Camera
1.4x Orin
2.1x Xavier

8 Cameras
1.37x Orin
Xavier data not published

Link to MLPerf results
SiMa.ai MLSoC vs. Nvidia Xavier + Orin (FPS/W)

DLA+GPU configuration at 15W

Average across 23 models: SiMa.ai is 9x Xavier and 4x Orin on FPS/W
Customer pipelines are a lot more complex

Image Capture

Image Preprocessing

ML

Mask Generation

Post Processing

Use Case Application
(Re-identification, predictive maintenance, tracking, grasping, swarm capabilities, etc)

What Sima.ai can execute

What competing ML accelerators execute
Summary

- The **only** startup company with performance and flexibility roadmap for customers
- **Extensible** silicon and software architecture
- Leverages open source software with broad innovations to deliver a complete software and platform solution to our customers
- **First time right silicon!** Demonstrated engineering execution on both silicon and software
- **Improved time-to-market.** Production ready boards and software building blocks that customers can integrate readily into their platforms