TrustForge: A Cryptographically Secure Enclave

Todd Austin, CEO Valeria Bertacco, Chief Scientist Alex Kisil, Director of Engineering

austin@agitalabs.com

The Little (TrustForge) Enclave that Could...

- Execute RISC-like instructions directly on encrypted data
- Transform a hackable CPU into next-gen privacy tech that surpasses FHE and ZKP
- Nullify software and hardware hacking
- Pass commercial red teaming and full formal verification with zero vulnerabilities
- Stop data breaches once and for all!
- Advance data privacy by denying software access to sensitive data it is processing
- Do this with only a 190k-gate functional unit!

Drop by my poster to learn more!

An Open-Source 130-nm Fusion-Enabled Deconvolution Kernel Generator IC For Real-Time mmWave Radar Platform Motion Compensation

NIKHIL POOLE, PRIYANKA RAINA, AND AMIN ARBABIAN AUGUST 29, 2023

Stanford University

Arbabian Lab (https://arbabianlab.stanford.edu/)

Problem/Motivation

But how can we process the same quantity of data on resource-limited edge devices with minimal latency?

Wearable/Portable Aids

<u>Goal:</u> Real-time edge sensing providing high-resolution with minimal power consumption.

Stanford University

mmWave Radar: An Optimal Sensing Modality

Stanford University

Primary Challenge With High-Resolution Edge Sensing

Solution

First custom IC enabling <u>real-time</u>, <u>resource-efficient</u> FMCW mmWave radar platform vibratory motion compensation, via early sensor fusion.

Stanford University

A Scalable Multi-Chiplet Deep Learning Accelerator with Hub-Side 2.5D Heterogeneous Integration

Zhanhong Tan¹, Yifu Wu², Yannian Zhang², Haobing Shi², Wuke Zhang², Kaisheng Ma¹

¹Tsinghua University, ²Polar Bear Tech

Overall Architecture

Flexible Neural Core (FNC)

 Reconfigurable architecture for the shape diversity

Mapping dataflow

 Die-to-Die communicationaware workload generator

Interconnection

- High-bandwidth Die-to-Die based on 2.5D package
- Efficient chiplet routing unit (CLRU)

System Board and Demo

System PCIe-based Board

Demo for running concurrent 4 models

Model 4: DeepLab v3+

HUB Chiplet

RDL Layer for 2.5D Package

lte	ms	Specifications	
Techi	nology	CMOS 12nm	
Die Area	HUB Chiplet	8.5mm × 6.8 mm = 57.8 mm ²	
	SIDE Chiplet	3.5mm × 2.8 mm = 9.8 mm ²	
Supply	Voltage	0.8V ~ 1.2V	
Freq	uency	100MHz – 1GHz	
Peak	INT4	40TOPS (8b-A × 4b-W)	
	INT8	20TOPS (8b-A × 8b-W)	
1 chiomanoc	INT16	10TOPS (16b-A × 8b-W)	
NPU Core	Efficiency	2.02TOPS/W	
Po	wer	4.5W ~ 12W	
D2D Ba	indwidth	width 6×24GB/s for TX/RX	
External Mem	ory Bandwidth	64GB/s (GDDR6)	
Bump Pitch	for 2.5D Pkg	55µm	

PHEP: <u>Paillier Homomorphic Encryption Processors</u> for Privacy-Preserving Applications in Cloud Computing

Guiming Shi¹, Yi Li², Xueqiang Wang², Zhanhong Tan¹, Dapeng Cao³, Jingwei Cai¹, Yuchen Wei¹, Zehua Li³, Wuke Zhang⁴, Yifu Wu⁴, Wei Xu^{1*}, and Kaisheng Ma^{1*}

> ¹Tsinghua University ²HuaKong TsingJiao ³Xi'an JiaoTong University ⁴Polar Bear Tech

Homomorphic Encryption in Cloud Computing

- Data privacy is a critical problem in Cloud Computing.
- Paillier Homomorphic Encryption can protect the privacy of the data and enable computing on the ciphertext without decryption first.

Bottleneck in Training and Inference Applications are Different

Application-Training, Bottleneck: Client Encryption and Decryption Application-Inference, Bottleneck: Cloud Computation

Comparison of the Two Engines: Specification

Fabricated on the Same Wafer: Significantly Reduces NRE of the Engine Chips

Optimized for Parallelism

Items/PE	Montgomery Unit
Algorithm	Montgomery Multiplication
Arithmetic	3*128 Bit Multiplier

Optimized for Performance

Items/PE	Montgomery Unit	Stein Unit		
Algorithm	Montgomery Multiplication	Stein Modular Inversion		
Arithmetic	3*256 Bit Multiplier	3*4102 Bit Adder		

High Performance Paillier Homomorphic Encryption Processors

PHEP Engine-1

- 480 TOPS (INT8)
- Client Encryption: 84KOPs
- Cloud Computation: 402KOPs
- Client Decryption: 106KOPs

PHEP Engine-2

- 192 TOPS (INT8)
- Client Encryption: 52KOPs
- Cloud Computation: 47MOPs
- Client Decryption: 48KOPs

Bit width of ciphertext = 4096, Bit width of plaintext = 64, Bit width of weight in Conv = 8. Maximum Performance in Ontimized Applications.

Thank You

shigm21@mails.tsinghua.edu.cn

5

Seungjae Moon Co-Founder, Research Scientist

Latency Processing Unit (LPU[™]) Accelerating Hyperscale Models for Generative AI

a ciller

le a

THE C. F. S.

Large Language Model (LLM)

Demand for highly scalable model inference hardware to support growing LLM

LLM Training & Inference Characteristics

Training

- Large batch
- Compute-intensive
- Throughput-oriented hardware

Inference

- Small batch
- Memory-intensive
- Latency-oriented hardware

Latency Processing Unit (LPU)

WORLD-FIRST HARDWARE DEDICATED FOR END-TO-END INFERENCE OF LLM

LPU Key Features

Streamlined Execution Engine

Perfectly balances memory bandwidth and compute logic to maintain bandwidth usage of ~90%

Expandable Synchronization Link

- Lightweight full-duplex peer-to-peer communication technology with custom protocol
- Performs data synchronization with low latency and latency hiding to achieve near-perfect scalability

DETAILS AT OUR POSTER SESSION

HyperDex Software Stack

- Software framework that supports various language model structures and user requests
- Runs automated tools to create prerequisite data (e.g., parallelization, mapping, and instructions) to run the LPU at the application level

Non-Overlapping vs. Overlapping Synchronization

Performance

Average Latency per Output Token

140 TOKENS PER SECOND FOR TEXT GENERATION WORKLOAD

1 LPU vs. 8 LPUs on Meta Al LLaMA2 7B Model

1 LPU (49.6sec)

8 LPUs (8.7sec)

	./demo.sh		1 0 0 0		./demo.sh		
HyperAccel Orion Text Generation			HyperAccel Orion Text Generation				
[Info] Loading HyperAccel Orion .			[Info] Loading Hyper#	ccel Orion .			
				•	1 400	1	

Chatbot UI

0	보안 안 됨 — 143.248.152.82	ن ه ا	<u></u> + C
			Chat Configuration
			Max new tokens
			Top P
			Top K
			Temperature
			Presence Penalty
			Frequency Penalty

HyperAccel, a startup that provides hyper-accelerated silicon IP and solutions for emerging applications

Currently supported models (up to ~100B parameters)

- OpenAI GPT 1, 2, 3
- Meta Al LLaMA 1, 2
- Meta Al OPT
- Stanford Alpaca
- EleutherAl Polyglot
- EleutherAl GPT Neo-X

For more information, please visit our poster session!

Website: <u>www.hyperaccel.ai</u>

Email : <u>sj.moon@hyperaccel.ai</u> | <u>contact@hyperaccel.ai</u>

MLSoC[™] - An overview

Hot Chips 35, August 28-29, 2023

Srivi Dhruvanarayan, Victor Bittorf

Our Vision: Effortless machine learning for the embedded edge

Wide variety of end2end CV applications; Accuracy Run any computer vision application, any and common operator support network, any model, any framework, any sensor, any resolution. **MLSoC**: Run entire CV application efficiently Application Efficient ML handling: Tile architecture. Any **Scheduling**: Operations efficiently pipelined, scheduled Data handling: On chip dec/enc, compliant with AVC, HEVC Pre/Post processing: Dedicated CVU Performance **Efficient static scheduling**: Maximize compute while minimizing data movement; 10x Quantization scheme: Patented accurate low-power scheme Low **Fully INT8 inference**: 100% of total compute dedicated power Patented cache usage: Manage memory hierarchy **- | 5**., Low code productization; Ready to use models, production ready platforms and dev kits

Pushbutton

SiMa.ai key innovations

Purpose built for ML edge at embedded edge

MLSoC[™] Machine Learning System-on-Chip

Silicon Overview - 10x Performance for ML Processing

Machine Learning Accelerator

50 INT8 TOPS

MLPerf: SiMa.ai delivers advantage over NVIDIA

SiMa.ai MLSoC (N16) compiled results unseats Orin (8nm) on both performance and power

Shaheen: An Open, Secure, and Scalable RV64 SoC for Autonomous Nano-UAVs

University of Bologna

L. Valente, A. Veeran, M. Sinigaglia, Y. Tortorella, A. Nadalini, N. Wistoff, B. Sá, A. Garofalo, R. Psiakis, M. Tolba, A. Kulmala, N. Limaye, O. Sinanoglu, S. Pinto, D. Palossi, L. Benini, B. Mohammad, D. Rossi

luca.valente@unibo.it

7

PULP Platform Open Source Hardware, the way it should be! @pulp_platform

Autonomous Nano-UAVs

- Versatility, safety, and cost-effet:
 - small and agile
 - ideal for accessing hard-to-reach areas or tight spaces (inspection/maintenance)
 - relatively inexpensive to produce and operate
- Requirements for future generation of nano-UAVs:
 - Run increasingly complex <u>multi-tasking</u> workloads with <u>large memory footprint</u>
 - Within a few hundred mW power budget
 - Support for <u>virtualization and secure operations</u> in uncontrolled/hostile scenarios

Shaheen: an Open, Secure, and Scalable RV64 SoC for **Autonomous Nano-UAVs**

- 9mm² SoC in 22nm FDSOI technology with:
 - A RV64 Linux-capable CPU enhanced with
 - Hypervisor support
 - Timing-channels mitigation
 - An energy efficient programmable multi-core accelerator (PMCA) based on 8 RV32 cores with ML and DSP extensions
 - Up to 512MB of low-power off-chip main memory
 - Logic locking on key IPs within the architecture ٠
 - 200mW power envelope •

NYU ABU DHAB

RV64 and custom RV32: the best of both worlds

بامعية نبوبورك انوظ

Y NYU ABU DHABI

• Host:

- On top of the hypervisor:
 - Attitude control (RTOS-based)
 - Linux-based legacy software such as wireless network stack.

• PMCA:

 The PMCA runs the CNN-based pose estimation task fed by a lowresolution front-looking camera.

جامعـة خليفـة UNIVERSITA DI BOLOGNA ETH ZÜRİCH 減 Khalifa University

PULP Platform Open Source Hardware, the way it should be!

Luca Valente luca.valente@unibo.it

DEI – Universitá di Bologna

ETHzürich () alma matter studiogum

@pulp_platform 🔰 pulp-platform.org

youtube.com/pulp_platform

A Heterogeneous SoC for Bluetooth LE in 28nm

Felicia Guo, Nayiri Krzysztofowicz, Alex Moreno, Jeffrey Ni, Daniel Lovell, Yufeng Chi, Kareem Ahmad, Sherwin Afshar, Josh Alexander, Dylan Brater, Cheng Cao, Daniel Fan, Ryan Lund, Jackson Paddock, Griffin Prechter, Troy Sheldon, Shreesha Sreedhara, Anson Tsai, Eric Wu, Kerry Yu, Daniel Fritchman, Aviral Pandey, Ali Niknejad, Kristofer Pister, and Borivoje Nikolic

University of California, Berkeley

Chip in a Semester

- Transmit packet decoding done two ways:
 - 1. Software Testing
 - 2. Commercial (Nordic nRF52840 DK) receiver
- Receiver tested from PCB antenna port to differential output of final VGA (pre-ADC)

sent with "GOBEAR HOTCHIPS23" as payload

Thank You!

We would like to acknowledge and thank Apple for supporting integrated circuit engineering classes at UC Berkeley EECS department through Apple's New Silicon Initiative program. This work is also funded by NSF CCRI ENS Chipyard Award #2016662.

Driving Compute Scale-out Performance with Optical I/O Chiplets in Advanced System-in-Package Platforms

Mark Wade, PhD | President, CTO, Co-Founder | August 28, 2023

Hundreds/Thousands of Sockets Computing as One

NVidia DGX GH200: 256 GPUs acting as 1 "Mega GPU"

Ayar Labs Optical I/O (OIO) Chiplet

Optical FPGA PCIe Card

2 x 4Tbps Optical I/O Chiplets

<1e-12 BER pre-FEC

10ns + TOF latency

Running Live Outside

Optical I/O Enables Fully Disaggregated Distributed Compute

A Heterogeneous RISC-V SoC for ML Applications in Intel 16 Technology SLICE

UNIVERSITY OF CALIFORNIA Yufeng Chi, Franklin Huang, Raghav Gupta, Ella Schwarz, Jennifer Zhou, Reza Sajadiany, Animesh Agrawal, Max Banister, Michelle Boulos, Jason Chandran, Jessica Dowdall, Leena Elzeiny,

Claire Gantan, Anthony Han, Roger Hsiao, Chadwick Leung, Edwin Lim, Jose Rodriguez, Tushar Sondhi, Mitchell Twu, Rongyi Wang, Mike Xiao, Ruohan Yan, Paul Kwon, Zhaokai Liu, Jerry Zhao,

10

A Heterogeneous RISC-V SoC for ML Applications in Intel 16 Technology

End of Poster Lightning Talks