

Inside the Cerebras Wafer-Scale Cluster

Cerebras Systems

Sean Lie Co-founder & Chief Hardware Architect

Cerebras Systems

Building a new class of computer system for the future of AI work A full AI acceleration solution: chip, system, software, ML

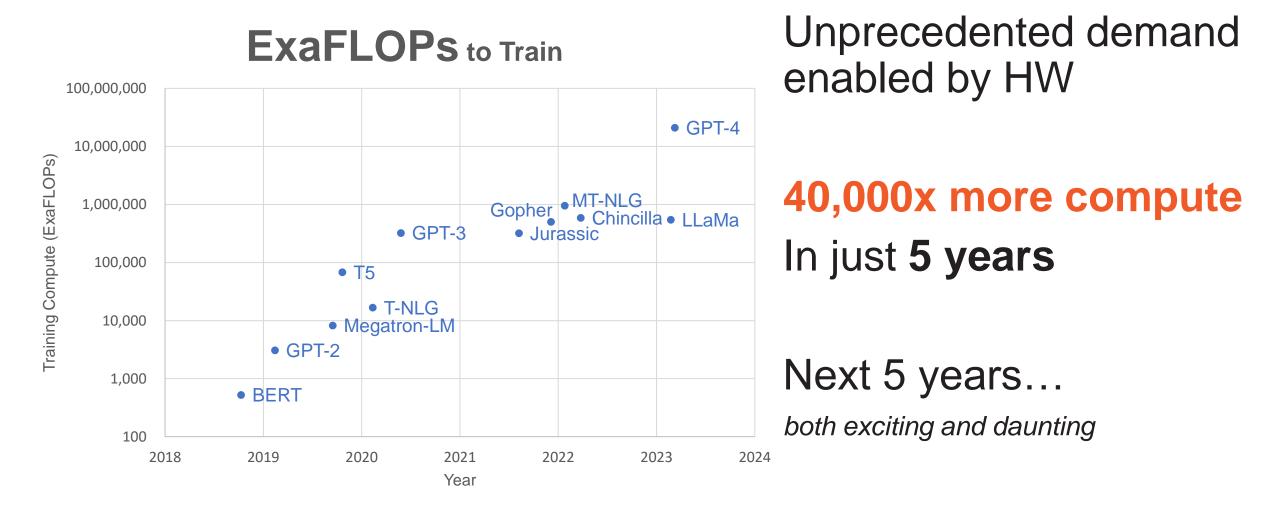
Founded in 2016

350+ Engineers

Offices Silicon Valley | San Diego | Toronto | Tokyo

Customers North America | Asia | Europe

Solving the Exponential Growth of Generative AI

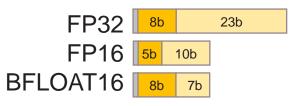


ML Acceleration Hardware Improvements in Industry

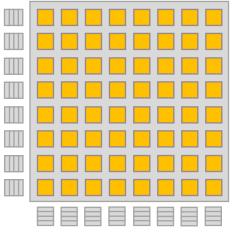
A lot of innovation in last few years

For example...

- Process: 16nm, 12nm, 7nm, 5nm
- Architecture: Low precision, systolic array, etc.



Low precision numerics

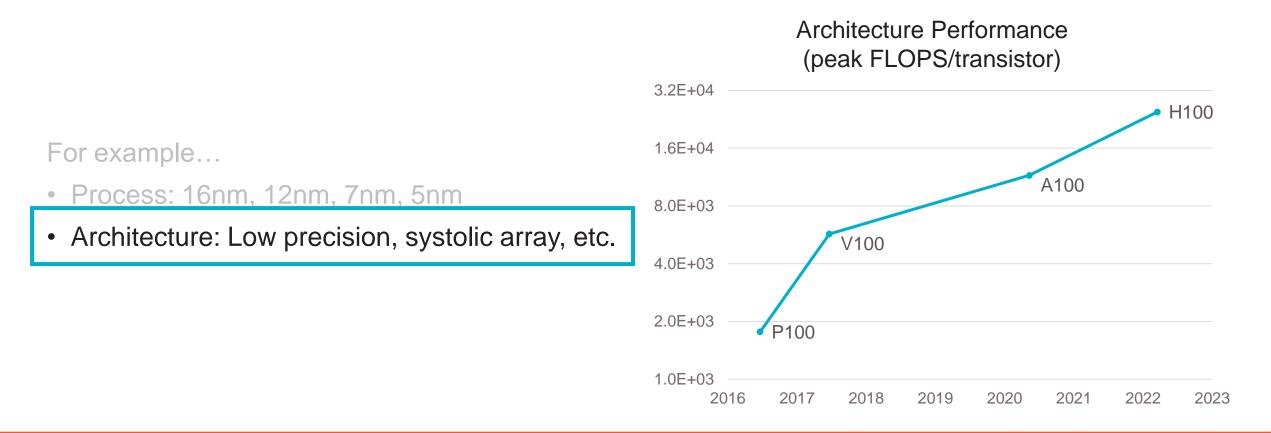


Dense GEMM datapath

Process Technology Gains

Moore's Law is not dead!

Chip Architecture Gains



Hardware architecture matters!

Meeting the Need

Exciting: in the last 5 years... What our industry delivered:

- 5x: Process technology
- 14x: Chip architecture
- 600x: Cluster scale-out

Daunting: what the ML needs:

- BERT \rightarrow GPT-4
- 40,000x more compute



Cluster Scale-out Dominated Performance Gains

But Existing Scale-out is Limited

Massive models need massive **memory**, massive **compute**, and massive **communication**.

On giant clusters of thousands of small devices, all three become intertwined, distributed problems.

Running a **single problem** requires inefficient, fine-grained partitioning and coordination of memory, compute, and communication

Distribution complexity scales dramatically with cluster size

The Cerebras Approach

Balanced scaling across all dimensions

- Process: WSE-2 Wafer Scale Integration
 - Order of magnitude improvement
 - Amplifying Moore's law
 - 46,225 mm2
 - 2.6 trillion transistors
 - 850,000 cores
- Architecture: Unstructured sparsity acceleration
 - Order of magnitude improvement
 - Full memory bandwidth for vector-scalar ops
 - Fine-grained dataflow scheduling
- Scale-out: Wafer Scale Cluster architecture
 - Inherently scalable to train largest models

Wafer Scale Cluster

Cluster Level Co-design

© 2023 Cerebras Systems Inc. All Rights Reserved

Challenges to Existing Scale-out

Several existing scale-out techniques

Data Parallel

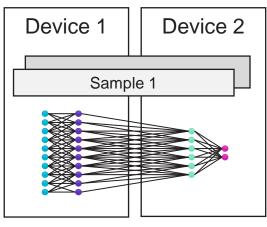
 Device 1
 Device 2

 Sample 1
 Sample N

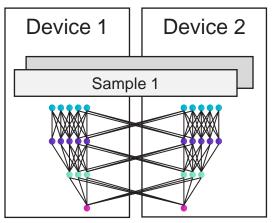
 Sample 1
 Sample N

Simple and scales well Multiple samples at a time Parameter memory limits

Pipelined Model Parallel



Multiple layers at a time Communication overhead N² activation memory **Tensor Model Parallel**



Multiple splits at a time Communication overhead Complex partitioning

No single solution, traditional scale-out requires hybrid use of all forms of parallelism

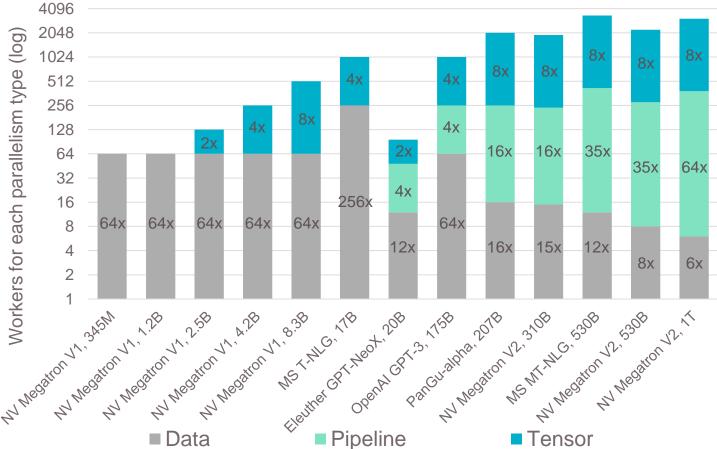
64 Resulting in complexity and often poor scaling 32

Complexity in Practice on GPU Clusters

Traditional scaling complexity

- Extreme-scale models on GPU requires all forms of parallelism simultaneously
- Tensor model parallel limited to within single server •
- Pipelined model parallel makes up most of parallelism for largest model, but it's the most complex
- Solution is bespoke distributed system

Parallelism Breakdown for Various Training Runs



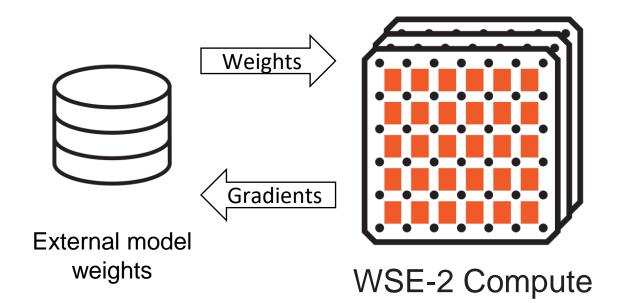
All share same limitation: memory tied to compute

© 2023 Cerebras Systems Inc. All Rights Reserved

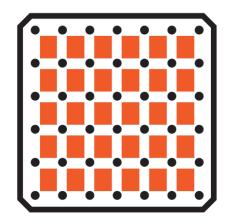
The Cluster is the ML Accelerator

Disaggregation of memory and compute

- Architect cluster-level memory and compute
- Store model weights externally
- Weight Streaming execution model
- Untangle memory and compute dependency

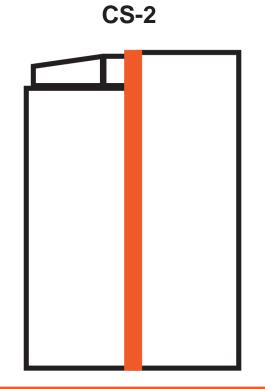


Scale model size and training speed independently



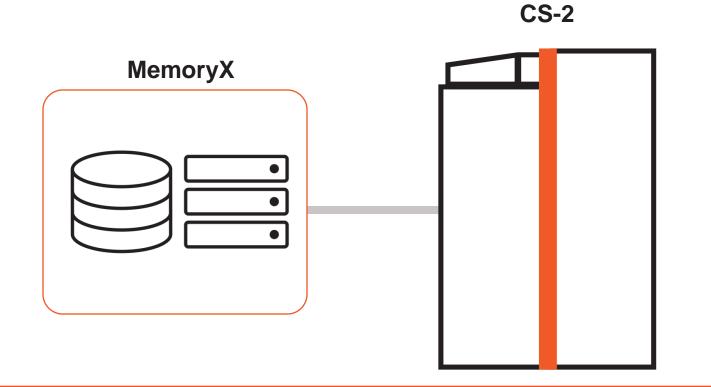
850,000 cores can run models of all sizes

© 2023 Cerebras Systems Inc. All Rights Reserved

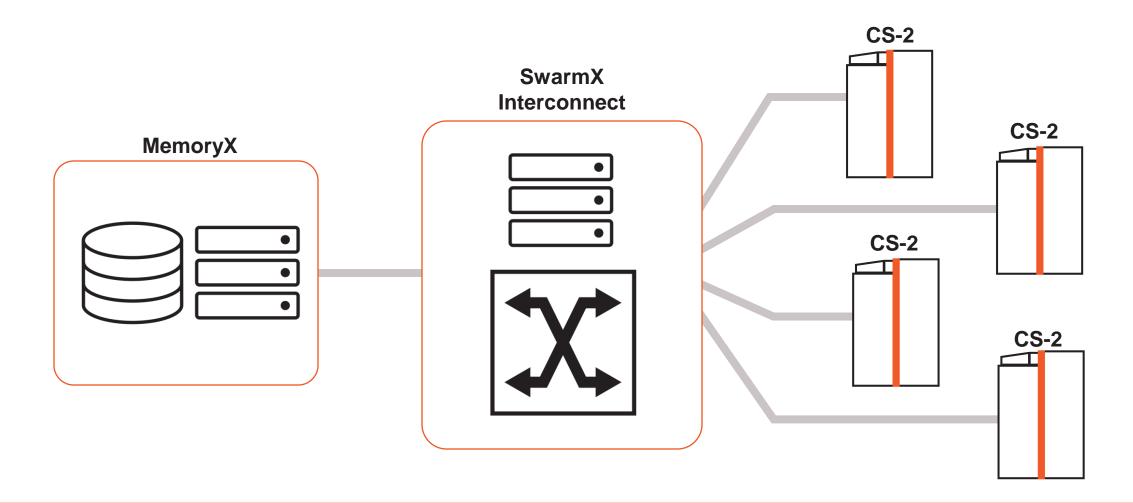


850,000 cores can run models of all sizes

© 2023 Cerebras Systems Inc. All Rights Reserved



Up to 120 trillion parameters on a single CS-2



Near-linear performance scaling up to 192 CS-2s

Weight Streaming Execution Model

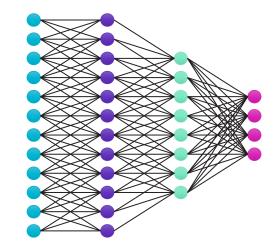
Built for extreme-scale neural networks:

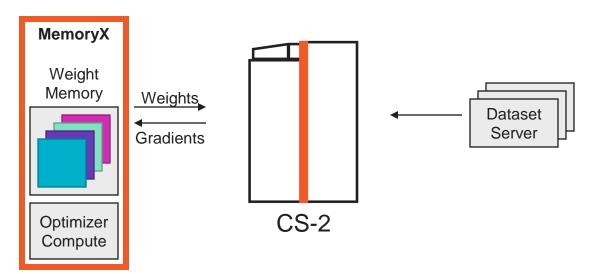
- Weights stored externally off-wafer
- Weights streamed onto wafer to compute layer
- Weight never stored on wafer
- Activations only are resident on wafer

Decoupling weight optimizer compute

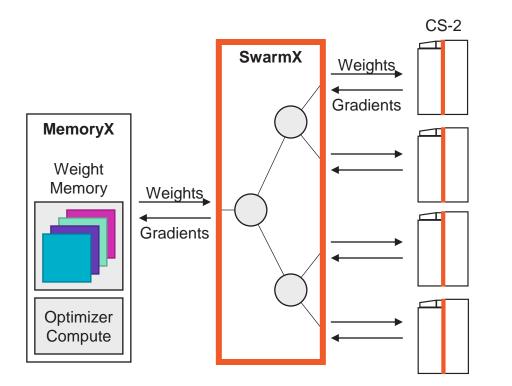
- Gradients streamed out of wafer
- Weight update occurs in MemoryX

Memory and compute hierarchy capable of massive models on single device





SwarmX Fabric Connects Multiple CS-2s



- Data parallel training across CS-2s
- Weights are **broadcast** to all CS-2s
- Gradients are **reduced** on way back
- Multi-system scaling with the same execution model as single system
 - Same system architecture
 - Same network execution flow
 - Same software user interface

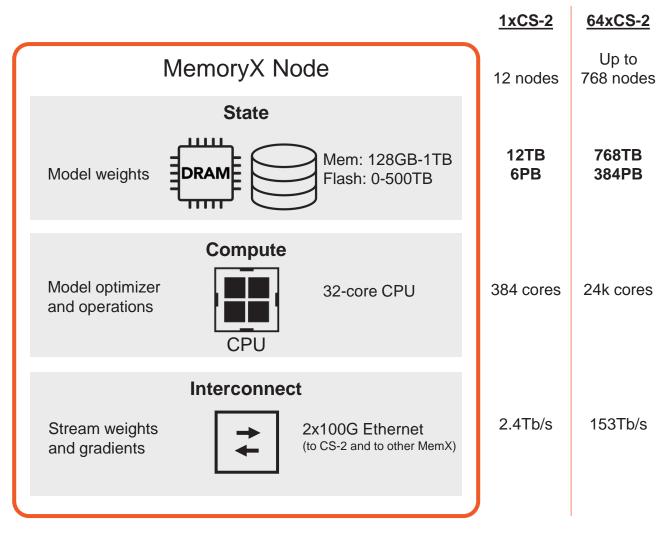
Scalable to extreme model sizes Compute scaling independent from capacity

Cluster Design

MemoryX: Flexible Capacity and Compute

Mapping model weights to hardware

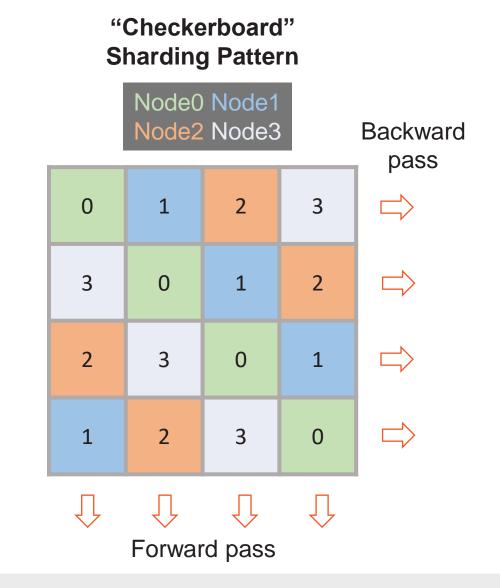
- State
 - Weights stored in DRAM and flash
 - Cost effective and high performance
- Compute
 - Optimizer and other ops run on CPUs
 - General purpose and flexible
 - Support for all common ML operations
- Interconnect
 - Stream weights/gradients over 100G Ethernet
 - Dedicated interfaces to CS-2 and other MemX
- Parallel Operation
 - Tensors sharded to use distributed capacity
 - Multiple nodes for high throughput



MemoryX: Efficient Weight Sharding

Distributed state requires special handling for non-elementwise tensor operations

- Native support for zero communication transpose operation
 - Common weight transpose used in every backward pass of training
 - Data sharded in "checkboard" pattern to enable parallel transpose operation
 - In the forward pass, each row streamed in parallel across nodes into CS-1
 - In the backward pass, each column streamed in parallel across nodes into CS-1
- Support for full collective communication ops
 - Rare but required for some ML operations such as gradient clipping



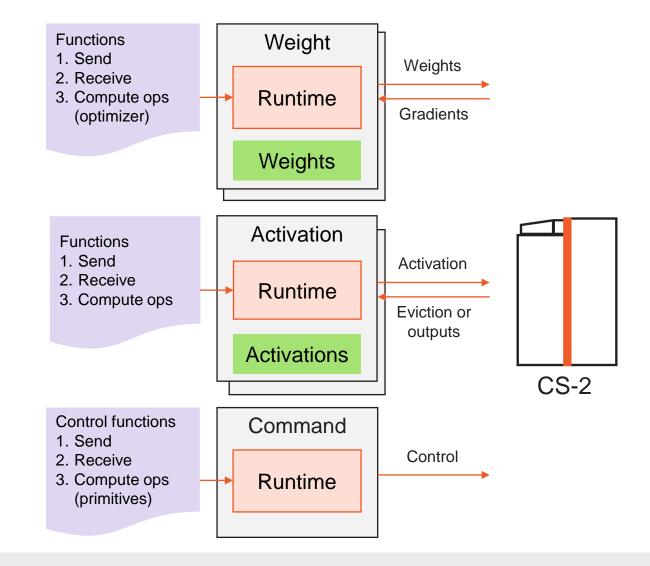
MemoryX: High Performance Runtime

Highly tuned runtime

- Data transfer: send/receive weights/gradients
- Compute: model ops not run on CS-2

Independent runtime functions on MemoryX

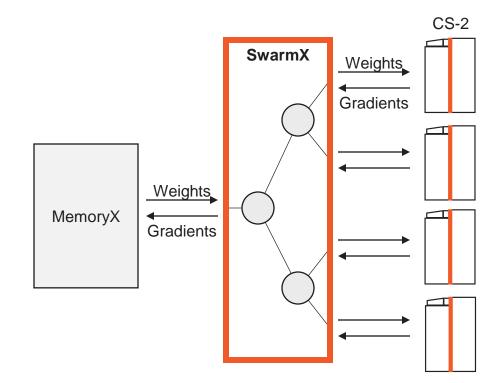
- 1. Weight runtime
 - Stream weights/gradients to/from CS-2
 - Perform compute ops on weights
 - i.e. optimizer and weight update
- 2. Activation runtime
 - Stream tensors to/from CS-2
 - i.e. input dataset, activation evict/refill
- 3. Command runtime
 - Stream control commands to CS-2
 - i.e. instructions to coordinate kernels on CS-2



Cluster Scale-Out

SwarmX fabric to scale out CS-2 cluster

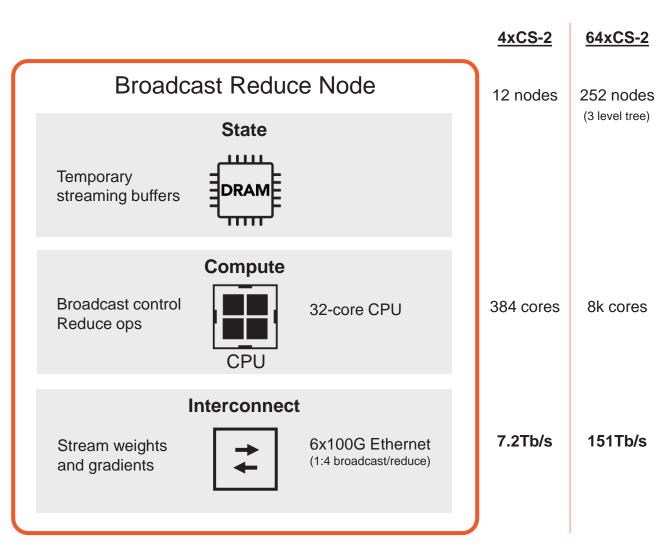
- Connectivity
 - Physical interconnect between all cluster components using high speed 100G Ethernet
 - · Cost effective and high performance
 - RoCE RDMA for low overhead and latency
- Broadcast Reduce (BR)
 - Replication and reduction functions performed
 on flexible CPUs
 - General purpose and high performance
 - Enables efficient data parallel only training



SwarmX: Flexible Broadcast and Reduce Bandwidth

Mapping data parallel training to hardware

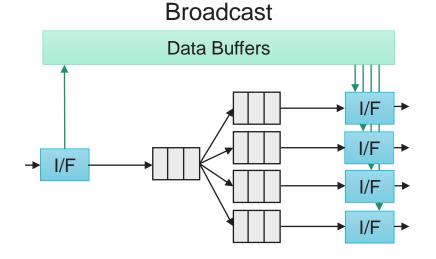
- Buffers
 - Temporary streaming buffers in DRAM
 - Low capacity and high performance
- Compute
 - Broadcast and reduction ops run on CPUs
 - General purpose and flexible
- Interconnect
 - Stream over 100G Ethernet RoCE RDMA
 - 6 interfaces for up to 1:4 broadcast/reduce
 - 1 redundant interface
- Parallel Operation
 - Multiple nodes for high throughput



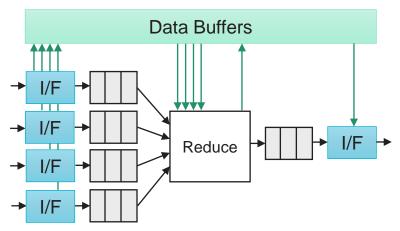
SwarmX: Efficient Broadcast Reduce

High performance datapath

- Each BR node performs up to 1:4 broadcast/reduction
- 1:4 broadcast
 - Input data queued and steamed to output
 - Zero copy with light weight control processing
- 4:1 reduce function
 - Input data queued and aggregated to output
 - Flexible set of reduction operations
 - Sum, Min/Max, Argmin/Argmax
 - Support range of ML usage cases
 - Data parallel gradient accumulation, contrastive loss, tensor summaries, etc.



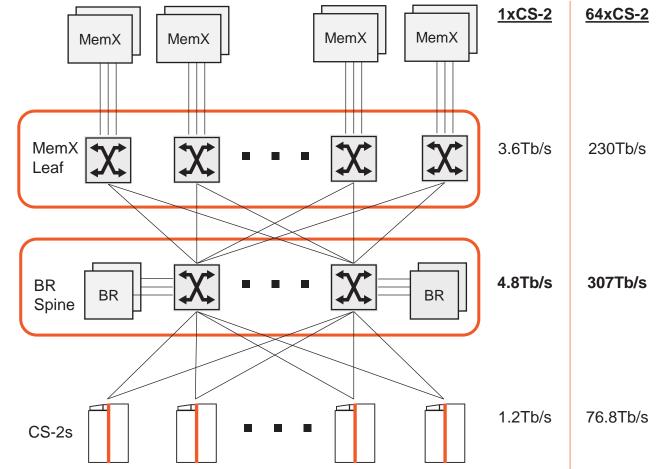
Reduce



SwarmX: Scalable and Flexible Topology

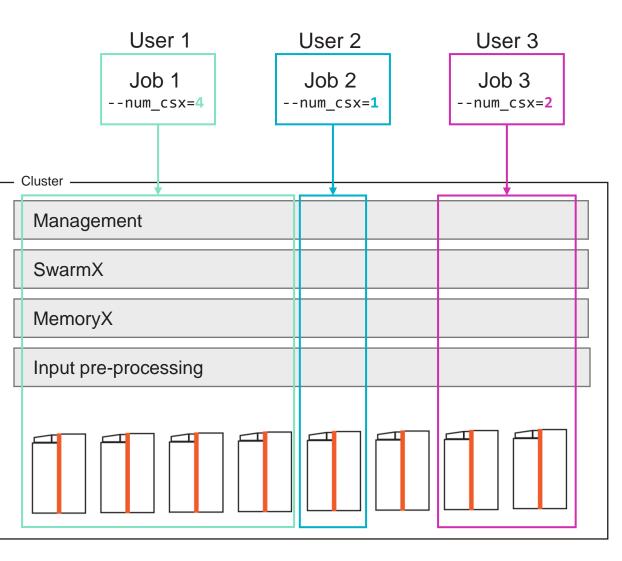
Scalable 2-layer spine-leaf topology

- MemoryX leaf switching
 - Connecting MemoryX globally to BR and CS-2
 - Primary traffic flow for weight streaming
 - Connecting MemoryX nodes locally
 - Secondary traffic flow for collective communication between weight shards
 - Connecting to data processing servers and storage uplink (not shown)
- Broadcast Reduce spine switching
 - Connecting all-to-all globally
 - High aggregate bandwidth and flexible
 - Connecting Broadcast Reduce (BR) nodes
 - Processing in transit between MemX and CS-2
 - Enable logical tree topology flexibly



Flexible Resource Provisioning and Management

- Resources configured to meet workload need
 - MemoryX capacity: size of models
 - MemoryX quantity: number of parallel jobs
- Cluster internally manages all resources
- Sub-cluster partitioning
 - Dynamically partitioning to any sub-cluster size
 - e.g. 16x cluster = 8x + 4x + 2x + 1x + 1x
- MemoryX memory allocation
 - Larger models use higher capacity MemoryX
- SwarmX fabric allocation
 - BR node assignment to sub-cluster needs
- Redundancy / fail-in-place
 - No single point of failure
 - Resume operation with alternative resources



Pulling it All Together

111

~

mill1111111

....

000

Andromeda Wafer Scale Cluster

16 CS-2 Systems

sparse compute

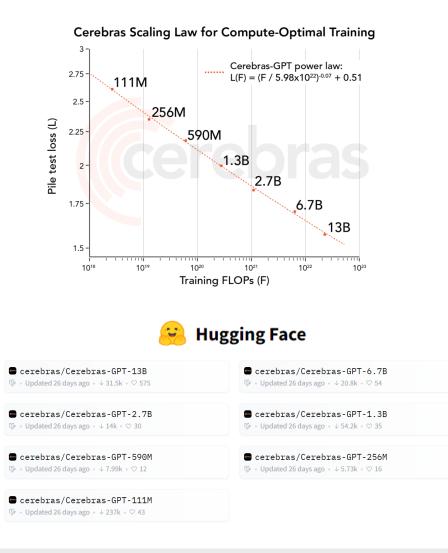
13.5M Al-optimized cores

120 PetaFLOPs dense compute

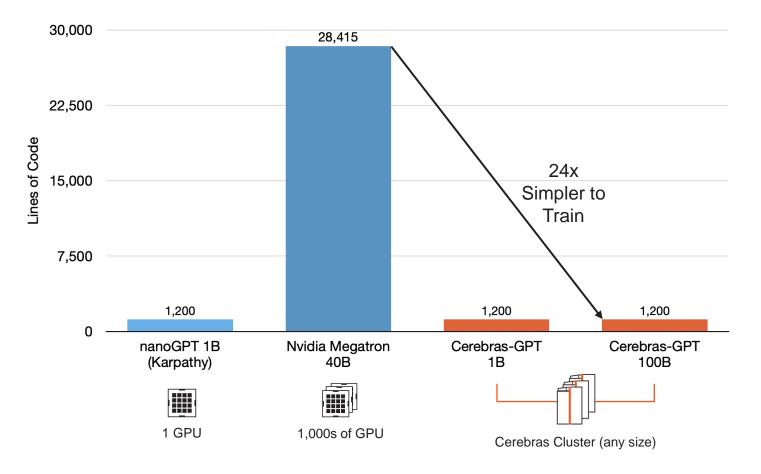
Cerebras-GPT: Open Compute-Optimal LLMs

Trained on Andromeda in just weeks!

- Open compute-optimal GPT models up to 13B trained on Cerebras Wafer-Scale Cluster
- Compute optimal scaling law model family 111M, 256M, 590M, 1.3B, 2.7B, 6.7B, 13B
- Hugging Face: <u>huggingface.co/cerebras/Cerebras-GPT-13B</u>
 - · Hundreds of thousands of downloads!
- Paper: <u>arxiv:2304.03208</u>

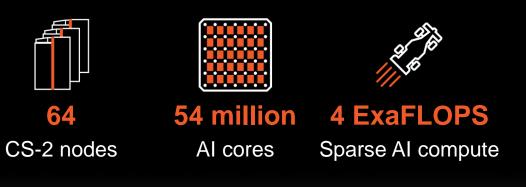


Experiencing Reduced Scaling Complexity



- A 1B parameter is simple to write and train on one GPU
- A large model across a cluster of Cerebras CS-2s is also easy to train
- On Cerebras, all model sizes have the same code and train the same way

CG-1: Condor Galaxy-1 Wafer Scale Cluster



BTLM: 7B Model Performance in a 3B Package

First public model trained on CG-1!

- New SOTA benchmark for 3B model
 - Outperforms all existing 3B models
 - Even outperforms many 7B models
 - While trained on less data, 2x less compute
- Most popular 3B model in community
 - Hugging Face: <u>huggingface.co/cerebras/btlm-3b-8k-base</u>
- Commissioned by the Opentensor foundation for use on the Bittensor network

Cerebras BTLM-3B-8K Hits 1 Million Downloads!

Enabling All to Train Largest Models

Scale out capability is critical to pushing to larger models

Wafer Scale Cluster architecture is inherently scalable

- 1. Largest models on a single device
- 2. Data parallel only scale-out
- 3. Native unstructured sparsity acceleration

There's no end in sight

- Models continue to grow exponentially
- Few companies have access to largest models today
- Cerebras architecture makes running largest models fast and easy

Making the largest models available to everyone

Thank you

