Inside the Cerebras Wafer-Scale Cluster

Cerebras Systems

Sean Lie
Co-founder & Chief Hardware Architect
Cerebras Systems
Building a new class of computer system for the future of AI work
A full AI acceleration solution: chip, system, software, ML

Founded in 2016

350+ Engineers

Offices
Silicon Valley | San Diego | Toronto | Tokyo

Customers
North America | Asia | Europe
Select Cerebras Customers

Customers: Large Enterprise, HPC, Government

• G42, GlaxoSmithKline, TotalEnergies, AstraZeneca, Bayer, Genentech, Tokyo Electron Devices...

• ANL, LLNL, NETL, PSC, NCSA, EPPC, Leibniz Supercomputing Centre...

• Security, e.g. DARPA, USAF, ARL
Solving the Exponential Growth of Generative AI

Unprecedented demand enabled by HW

40,000x more compute
In just 5 years

Next 5 years…
both exciting and daunting
ML Acceleration Hardware Improvements in Industry

A lot of innovation in last few years

For example…

• Process: 16nm, 12nm, 7nm, 5nm
• Architecture: Low precision, systolic array, etc.
For example…

- Process: 16nm, 12nm, 7nm, 5nm
- Architecture: Low precision, systolic array, etc.

Moore’s Law is not dead!
For example…
- Process: 16nm, 12nm, 7nm, 5nm
- Architecture: Low precision, systolic array, etc.

Hardware architecture matters!
Meeting the Need

Exciting: in the last 5 years…
What our industry delivered:
 • 5x: Process technology
 • 14x: Chip architecture
 • *600x*: Cluster scale-out

Daunting: what the ML needs:
 • BERT → GPT-4
 • *40,000x* more compute

Cluster Scale-out Dominated Performance Gains
But Existing Scale-out is Limited

Massive models need massive memory, massive compute, and massive communication.

On giant clusters of thousands of small devices, all three become intertwined, distributed problems.

Running a single problem requires inefficient, fine-grained partitioning and coordination of memory, compute, and communication.

Distribution complexity scales dramatically with cluster size.
The Cerebras Approach

Balanced scaling across all dimensions

- Process: **WSE-2 Wafer Scale Integration**
 - Order of magnitude improvement
 - Amplifying Moore’s law
 - 46,225 mm²
 - 2.6 trillion transistors
 - 850,000 cores

- Architecture: **Unstructured sparsity acceleration**
 - Order of magnitude improvement
 - Full memory bandwidth for vector-scalar ops
 - Fine-grained dataflow scheduling

- Scale-out: **Wafer Scale Cluster architecture**
 - Inherently scalable to train largest models
Wafer Scale Cluster

Cluster Level Co-design
Challenges to Existing Scale-out

Several existing scale-out techniques

Data Parallel
- Simple and scales well
- Multiple samples at a time
- Parameter memory limits

Pipelined Model Parallel
- Multiple layers at a time
- Communication overhead
- \(N^2 \) activation memory

Tensor Model Parallel
- Multiple splits at a time
- Communication overhead
- Complex partitioning

No single solution, traditional scale-out requires hybrid use of all forms of parallelism
Complexity in Practice on GPU Clusters

Traditional scaling complexity
- Extreme-scale models on GPU requires all forms of parallelism simultaneously
- Tensor model parallel limited to within single server
- Pipelined model parallel makes up most of parallelism for largest model, but it’s the most complex
- Solution is bespoke distributed system
- Resulting in complexity and often poor scaling

Parallelism breakdown derived from the model publication: NV Megatron V1, MS T-NLG, Eleuther GPT-NeoX, OpenAI GPT-3, PanGu-alpha, NV Megatron V2, MS MT-NLG

All share same limitation: memory tied to compute
The Cluster *is* the ML Accelerator

Disaggregation of memory and compute

- Architect cluster-level memory and compute
- Store model weights externally
- Weight Streaming execution model
- Untangle memory and compute dependency

Scale model size and training speed independently
WSE-2

850,000 cores can run models of all sizes
850,000 cores can run models of all sizes
Up to 120 trillion parameters on a single CS-2
Near-linear performance scaling up to 192 CS-2s
Weight Streaming Execution Model

Built for extreme-scale neural networks:
- Weights stored externally off-wafer
- Weights streamed onto wafer to compute layer
- Weight never stored on wafer
- Activations only are resident on wafer

Decoupling weight optimizer compute
- Gradients streamed out of wafer
- Weight update occurs in MemoryX

Memory and compute hierarchy capable of massive models on single device
SwarmX Fabric Connects Multiple CS-2s

- Data parallel training across CS-2s
- Weights are broadcast to all CS-2s
- Gradients are reduced on way back
- Multi-system scaling with the same execution model as single system
 - Same system architecture
 - Same network execution flow
 - Same software user interface

Scalable to extreme model sizes
Compute scaling independent from capacity
Cluster Design
Mapping model weights to hardware

- **State**
 - Weights stored in DRAM and flash
 - Cost effective and high performance
- **Compute**
 - Optimizer and other ops run on CPUs
 - General purpose and flexible
 - Support for all common ML operations
- **Interconnect**
 - Stream weights/gradients over 100G Ethernet
 - Dedicated interfaces to CS-2 and other MemX
- **Parallel Operation**
 - Tensors sharded to use distributed capacity
 - Multiple nodes for high throughput
Distributed state requires special handling for non-elementwise tensor operations

- Native support for zero communication transpose operation
 - Common weight transpose used in every backward pass of training
 - Data sharded in “checkboard” pattern to enable parallel transpose operation
 - In the forward pass, each row streamed in parallel across nodes into CS-1
 - In the backward pass, each column streamed in parallel across nodes into CS-1

- Support for full collective communication ops
 - Rare but required for some ML operations such as gradient clipping
MemoryX: High Performance Runtime

Highly tuned runtime
- Data transfer: send/receive weights/gradients
- Compute: model ops not run on CS-2

Independent runtime functions on MemoryX

1. Weight runtime
 - Stream weights/gradients to/from CS-2
 - Perform compute ops on weights
 - i.e. optimizer and weight update

2. Activation runtime
 - Stream tensors to/from CS-2
 - i.e. input dataset, activation evict/refill

3. Command runtime
 - Stream control commands to CS-2
 - i.e. instructions to coordinate kernels on CS-2
Cluster Scale-Out

SwarmX fabric to scale out CS-2 cluster

• Connectivity
 • Physical interconnect between all cluster components using high speed 100G Ethernet
 • Cost effective and high performance
 • RoCE RDMA for low overhead and latency

• Broadcast Reduce (BR)
 • Replication and reduction functions performed on flexible CPUs
 • General purpose and high performance
 • Enables efficient data parallel only training
SwarmX: Flexible Broadcast and Reduce Bandwidth

Mapping data parallel training to hardware

- **Buffers**
 - Temporary streaming buffers in DRAM
 - Low capacity and high performance

- **Compute**
 - Broadcast and reduction ops run on CPUs
 - General purpose and flexible

- **Interconnect**
 - Stream over 100G Ethernet RoCE RDMA
 - 6 interfaces for up to 1:4 broadcast/reduce
 - 1 redundant interface

- **Parallel Operation**
 - Multiple nodes for high throughput
SwarmX: Efficient Broadcast Reduce

High performance datapath

• Each BR node performs up to 1:4 broadcast/reduction
• 1:4 broadcast
 • Input data queued and steamed to output
 • Zero copy with light weight control processing
• 4:1 reduce function
 • Input data queued and aggregated to output
 • Flexible set of reduction operations
 • Sum, Min/Max, Argmin/Argmax
 • Support range of ML usage cases
 • Data parallel gradient accumulation, contrastive loss, tensor summaries, etc.
SwarmX: Scalable and Flexible Topology

Scalable 2-layer spine-leaf topology

- MemoryX leaf switching
 - Connecting MemoryX globally to BR and CS-2
 - Primary traffic flow for weight streaming
 - Connecting MemoryX nodes locally
 - Secondary traffic flow for collective communication between weight shards
 - Connecting to data processing servers and storage uplink (not shown)
- Broadcast Reduce spine switching
 - Connecting all-to-all globally
 - High aggregate bandwidth and flexible
 - Connecting Broadcast Reduce (BR) nodes
 - Processing in transit between MemX and CS-2
 - Enable logical tree topology flexibly

Diagram:

- MemX Leaf
- BR Spine
- CS-2s
- 1xCS-2
- 64xCS-2

- 3.6Tb/s
- 4.8Tb/s
- 1.2Tb/s
- 230Tb/s
- 307Tb/s
- 76.8Tb/s
Flexible Resource Provisioning and Management

- Resources configured to meet workload need
 - MemoryX capacity: size of models
 - MemoryX quantity: number of parallel jobs
- Cluster internally manages all resources
- Sub-cluster partitioning
 - Dynamically partitioning to any sub-cluster size
 - e.g. 16x cluster = 8x + 4x + 2x + 1x + 1x
- MemoryX memory allocation
 - Larger models use higher capacity MemoryX
- SwarmX fabric allocation
 - BR node assignment to sub-cluster needs
- Redundancy / fail-in-place
 - No single point of failure
 - Resume operation with alternative resources
Pulling it All Together
Andromeda Wafer Scale Cluster

16
CS-2 Systems

13.5M
AI-optimized cores

1 ExaFLOPs
sparse compute

120 PetaFLOPs
dense compute
Cerebras-GPT: Open Compute-Optimal LLMs

Trained on Andromeda in just weeks!

• Open compute-optimal GPT models up to 13B trained on Cerebras Wafer-Scale Cluster
• Compute optimal scaling law model family 111M, 256M, 590M, 1.3B, 2.7B, 6.7B, 13B

• Hugging Face: huggingface.co/cerebras/Cerebras-GPT-13B
 • Hundreds of thousands of downloads!
• Paper: arxiv:2304.03208
Experiencing Reduced Scaling Complexity

- A 1B parameter is simple to write and train on one GPU
- A large model across a cluster of Cerebras CS-2s is also easy to train
- On Cerebras, all model sizes have the same code and train the same way
CG-1: Condor Galaxy-1 Wafer Scale Cluster

- 64 CS-2 nodes
- 54 million AI cores
- 4 ExaFLOPS Sparse AI compute
BTLM: 7B Model Performance in a 3B Package

First public model trained on CG-1!

- New SOTA benchmark for 3B model
 - Outperforms all existing 3B models
 - Even outperforms many 7B models
 - While trained on less data, 2x less compute

- Most popular 3B model in community
 - Hugging Face: huggingface.co/cerebras/btlm-3b-8k-base

- Commissioned by the Opentensor foundation for use on the Bittensor network

Cerebras BTLM-3B-8K Hits 1 Million Downloads!
Enabling All to Train Largest Models

Scale out capability is critical to pushing to larger models

Wafer Scale Cluster architecture is inherently scalable
1. Largest models on a single device
2. Data parallel only scale-out
3. Native unstructured sparsity acceleration

There’s no end in sight
- Models continue to grow exponentially
- Few companies have access to largest models today
- Cerebras architecture makes running largest models fast and easy

Making the largest models available to everyone
Thank you