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For Over 30 Years, Al Driven By Brute Force Compute

Computing power demanded by Deep Learning
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Numenta

Dramatically improve Al using discoveries from neuroscience

® Founded in 2005 by Jeff Hawkins and Donna Dubinsky

® Mission: reverse engineer the neocortex and apply neocortical principles to Al
- Two decades of neuroscience research yielded breakthrough Al technology

® Generative Al Platform launch in September
- 10x - 150x cost/speed improvements across all LLM models
- Highly scalable deployment of LLMs on CPUs with >10X price/performance
- Key partnerships with Intel, Oracle, Weights and Biases, and others
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Can Neuroscience Improve Al?
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Biological Neurons Are Complex
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Pyramidal neuron Biological networks are highly sparse and context sensitive

Video: Smirnakis Lab, Baylor College of Medicine
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Sparsity: Opportunities and Challenges
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Sparsity Today
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Problems With GPUs For Inference

e |Inflexible programming model
o Difficult and time consuming to program

e Implementing multi-tenant solutions presents challenges
o Resource allocation, performance, and scalability concerns

e Co-processor architecture introduces challenges
o Dual memory architecture leads to slow startup for large models / datasets

e Handling asynchronous requests with low-latency is challenging

e Mixed CPU+GPU infrastructure challenging for many IT departments
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Intel® Advanced Matrix
Extensions (AMX) built-in for Al
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AMX Opportunities

Significant computational improvements over AVX512

Significant potential once tiles have been loaded
o 16x32x32 BF16 matrix multiplication in 16-clks
o 1x32x32 BF16 matrix multiplication in 9-clks

Critical to hide tile loads to maximize compute

Possible to use AVX512 in parallel with AMX

o Conversion of FP32 results back to BF16 for subsequent
processing

o Any necessary data swizzling

o Other algorithmic requirements (e.g., SoftMax etc.)

Assumes user wants to perform dense matrix
multiplications.....
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Generative vs. Non-Generative Al: Both Required

Generative Al

Non-Generative Al

(GPT-like)

What Creates new text
How Models create original, human-like responses
+ Creativity
Pros .
* Flexibility
* Unreliable
Cons .
+ Slow and expensive
+ Create chatbot responses
Examples | « Translations

* Summarization

(BERT-like)

Understands existing text

Models analyze, interpret, and find answers within text

* Accuracy
* Price / Performance
+ Safety & Control

« Can’t do long contexts

+ Compare and classify text

+ |dentify sentiment of a document
Find answers to questions in document collections
« Extract entities

4’0'\. Numenta



Large Throughput Increases With AMX + Numenta

Speedup (Normalized throughput)

BERT-large, seq_len =64; 56-core SPR; AWS M6i.32xlarge [32 core Ice lake]; AWS M6a.48xlarge [48 core AMD Milan]
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https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Throughput With Asynchronous Clients
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https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT#inference-performance-nvidia-dgx-a100-1x-a100-40gb
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT#inference-performance-nvidia-dgx-a100-1x-a100-40gb

Generative Al Increases Compute Even More

Increased cost with
Increased context

From millions to lterative build out

billions parameters

20X-1000X larger than Entire mgdel must be run As 'the amount of context
many times to generate increases, so does the
other LLMs such as BERT .
each result complexity of the task
200 - 1000 X # tokens X context length

— 10,000 - 100,000 times more compute Z* Numenta



Scaling GPT Models
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Numenta + AMX delivers
* 10X throughput of NVIDIA A100
e |Latencies <.5 second
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Results shown for 32 input tokens, 32 output tokens, GPT-J-6B
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Numenta Shifts Al Accuracy Scaling Laws

e In Al accuracy increases Accuracy vs FLOPS
with network size

e At a fixed compute cost, 0
we achieve significantly
higher accuracies
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Evolution of Al and Hardware Architectures

e AMX can provide significant performance gains for LLMs
o  Simple programming model accelerates development

e Matmul primitives are powerful, but complicate novel architectures
o Many common sparsity techniques are incomputable

e [orlarge models & sequence lengths, memory bandwidth is performance limiter
o Use of HBM helps -- 3X throughput improvements

e Evolution of Al
o  Sparsity introduces irregularity — rigid instructions as in tensor cores introduce problems
o  Will require completely new architectural components
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Neuroscience as a Technology

Thousand

Brains Theory

Architecture
Sparse connectivity
Neurons with dendrites
Sensorimotor circuitry

Data Structures
Contextual activations
3D reference frames
Representing uncertainty

Algorithms
k-Winner-Take-All
Sensorimotor learning
Distributed model voting
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Ultra Fast Inference

Accelerated Model
Creation

Novel Hardware
Architectures

Applications

NLP & Generative Al

Computer Vision

Edge Computing
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Numenta: Scalable and Secure Deployment of LLMs
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Summary

e State of Al today

o Inference and training have very different requirements
o With smart algorithms, CPUs are ideal for Al inference workloads. Lack of GPUs not a problem.

e Neuroscience shows us the future of Al

o Extremely low power, highly sparse, dynamic routing of information
o Training and inference will merge with continual learning

e The future of Al is not just faster and faster matmuls

o  Critical to have a flexible programming model
o Modern CPUs illustrate the directions we need to go

Questions? Contact us: sahmad@numenta.com
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Thank You!
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