

Supercharged AI Inference on Modern CPUs

Lawrence Spracklen Subutai Ahmad

Numenta

HotChips 2023

For Over 30 Years, Al Driven By Brute Force Compute

Computing power demanded by Deep Learning

Numenta

Dramatically improve AI using discoveries from neuroscience

• Founded in 2005 by Jeff Hawkins and Donna Dubinsky

Mission: reverse engineer the neocortex and apply neocortical principles to AI
 Two decades of neuroscience research yielded breakthrough AI technology

- Generative AI Platform launch in September
 - 10x 150x cost/speed improvements across all LLM models
 - Highly scalable deployment of LLMs on CPUs with >10X price/performance
 - Key partnerships with Intel, Oracle, Weights and Biases, and others

One of Bill Gates' Top 5 Books of 2021

Can Neuroscience Improve AI?

Biological Neurons Are Complex

Pyramidal neuron

Biological networks are highly sparse and context sensitive

Video: Smirnakis Lab, Baylor College of Medicine

Sparsity: Opportunities and Challenges

Compressed Sparse Row (CSR)

Sparsity Today

Problems With GPUs For Inference

- Inflexible programming model
 - Difficult and time consuming to program
- Implementing multi-tenant solutions presents challenges
 - Resource allocation, performance, and scalability concerns
- Co-processor architecture introduces challenges
 - Dual memory architecture leads to slow startup for large models / datasets
- Handling asynchronous requests with low-latency is challenging
- Mixed CPU+GPU infrastructure challenging for many IT departments

Intel[®] Advanced Matrix Extensions (AMX) built-in for AI

AMX Opportunities

- Significant computational improvements over AVX512
- Significant potential once tiles have been loaded
 - 16x32x32 BF16 matrix multiplication in 16-clks
 - 1x32x32 BF16 matrix multiplication in 9-clks
- Critical to hide tile loads to maximize compute
- Possible to use AVX512 in parallel with AMX
 - Conversion of FP32 results back to BF16 for subsequent processing
 - Any necessary data swizzling
 - Other algorithmic requirements (e.g., SoftMax etc.)
- Assumes user wants to perform dense matrix multiplications.....

Per Core AMX Support

"Tiles"

2D Register Files

╋ "TMUL"

Tile Matrix Multiply

Generative vs. Non-Generative AI: Both Required

	Generative Al (GPT-like)	Non-Generative Al (BERT-like)
What	Creates new text	Understands existing text
How	Models create original, human-like responses	Models analyze, interpret, and find answers within text
Pros	CreativityFlexibility	 Accuracy Price / Performance Safety & Control
Cons	UnreliableSlow and expensive	Can't do long contexts
Examples	 Create chatbot responses Translations Summarization 	 Compare and classify text Identify sentiment of a document Find answers to questions in document collections Extract entities

Large Throughput Increases With AMX + Numenta

BERT-large, seq_len =64; 56-core SPR; AWS M6i.32xlarge [32 core lce lake]; AWS M6a.48xlarge [48 core AMD Milan]

Throughput With Asynchronous Clients

BERT-Large, Seq len 64, BS=1 System: AWS m7i.48xlarge 96-core, 4th Gen Xeon

Generative Al Increases Compute Even More

From millions to billions parameters		Iterative build out		Increased cost with increased context
20X-1000X larger than other LLMs such as BERT		Entire model must be run many times to generate each result		As the amount of context increases, so does the complexity of the task
200 - 1000	X	# tokens	X	context length

= 10,000 – 100,000 times more compute

Scaling GPT Models

Numenta + AMX delivers

- 10X throughput of NVIDIA A100
- Latencies <.5 second

Results shown for 32 input tokens, 32 output tokens, GPT-J-6B

Numenta Shifts AI Accuracy Scaling Laws

- In AI accuracy increases with network size
- At a fixed compute cost, we achieve significantly higher accuracies

Data from (Tay et al., 2022) 💦 🔥

Evolution of AI and Hardware Architectures

- AMX can provide significant performance gains for LLMs
 - Simple programming model accelerates development
- Matmul primitives are powerful, but complicate novel architectures
 - Many common sparsity techniques are incomputable
- For large models & sequence lengths, memory bandwidth is performance limiter
 - Use of HBM helps -- 3X throughput improvements
- Evolution of AI
 - Sparsity introduces irregularity rigid instructions as in tensor cores introduce problems
 - Will require completely new architectural components

Neuroscience as a Technology

Numenta: Scalable and Secure Deployment of LLMs

Contract Analysis

Summary

- State of AI today
 - Inference and training have very different requirements
 - With smart algorithms, CPUs are ideal for AI inference workloads. Lack of GPUs not a problem.
- Neuroscience shows us the future of AI
 - Extremely low power, highly sparse, dynamic routing of information
 - Training and inference will merge with continual learning
- The future of AI is not just faster and faster matmuls
 - Critical to have a flexible programming model
 - Modern CPUs illustrate the directions we need to go

Questions? Contact us: sahmad@numenta.com

Thank You!

