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Hexagon NPU
High Performance, Power Efficient ML Inference Processor for Qualcomm® SoCs

Hexagon
+ Vector eXtensionsHexagon NPU
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Hexagon NPU

• Processor executing 3 instruction sets:

• Scalar: For control flow and general purpose

• Vector: General purpose data-parallel compute

• Tensor: Matrix multiply and convolutional layer

• Over multiple threads using shared memories (core 
local & cached DDR)

• DSP features:

• VLIW, hardware looping

• Targets DSP and compute-heavy workloads

• CPU-like features:

• Virtual → Physical translation, security, caching

• Branching (call/return/indirect), exceptions, interrupts

• Conventional software tools (including LLVM)

• Maximized efficient single-core performance

• Make the most of resources

Scalar
Int:8,16,32,64

Float:32,64

Vector
Int: 8, 16, 32
Float: 16, 32

Tensor
Int: 4, 8, 16

Float: 16DMA/BUS

L2

Tightly Coupled 
Memory (TCM)

I$D$

Multi-thread
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32 Vreg, 4 Vpred

X-lane

Shift

Multiply

Multiply

Vector

• Vector SIMD - like other SIMD extensions, but wider

• 1 Kb = 128B = 64H = 32W wide

• 8/16/32 bit fixed-point, 16/32 bit floating-point

• Compute and registers

• 4 compute, 1 load, and 1 store VLIW resources

• 32 vector registers and 4 vector predicate registers

• Memory access

• Load/store with L2/DDR  or TCM

• Fully parallel scatter & gather with TCM to address arbitrary data-
parallel workloads

• Target applications

• Originally for image processing

• Adapted to additional workloads including DNNs

Store
Scat
Gath

Load

Memory
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Tensor

• Tensor SIMD
• Tensor instead of vector as data-parallel quantum

• 2D matrices, 3D (X, Y, depth), and 4D (multiple 3D)

• Bit widths (activations * weights):
• Integer: (8/16) * (4/8/16)

• Float: FP16 * FP16

• ISA accelerates:
• Matrix multiply

• Convolutional layer

• Depth-wise and other small group sized convolutions

• Fused activation functions

• Per output-channel scaling

Activations
Matrix

Weights
Matrix

Memory

Accumulation
Matrix

Activations
Matrix

Weights
Matrix

Memory

Accumulation
Matrix
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Architecture – Threads

• Each thread has its own program
• VLIW for predictable Instruction Level Parallelism

• Scalar ISA for control flow and serial compute

• SIMD extension acquired/released
• While acquired, a program has extension 

capabilities

• Scalar, vector, and tensor each have 
dedicated registers
• Instructions operate on thread-local registers and 

[potentially shared] memory

V
LI

W I-Cache
Scalar TensorVector

V
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Scalar TensorVector

RegFile RegFile RegFile
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Architecture – Memory model

• Coherent memory between threads

• Normal synchronization between threads

• Only scalar instructions uses L1 D-Cache

• Prevents pollution by vectors & tensors

• Larger L2 acts as an L1 for vectors

• In addition to backing I-Cache & D-Cache

• Software prefetch hides DDR latency

• TCM for vectors & tensors:

• Acts as a software-managed cache

• More scalable than a hardware cache

• Much higher bandwidth than a typical cache

• Enables very high-bandwidth scatter/gather

• Predictable performance – no misses

• Virtually addressed DMA for hiding DDR latency



Efficiency
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Tensor Data Locality – Temporal and Spatial

• Data locality is key to tensor compute efficiency

• N:1 compute:memory matrix multiply

• 2N2 data read and transferred

• For 2N3 compute

• Single biggest reason for a dedicated tensor or matrix engine

• Output stationary:

• Accumulators are wider bit-width than input activations & weights

• Accumulate across all input channels and filter taps

• Convolution activations reuse:

• Input activations with halo read once for each hardware output tensor

• Convolution as a sequence of unaligned matrix multiplies

• Hardware SIMD tensor contiguous in memory

• Maximized memory bandwidth, just like a SIMD vector is contiguous

• Responsibility of software to organize data in these chunks

N2 data

N2 data

N2 data

N2 data

N3 MACsN3 MACsN2 data

N2 data

N3 MACsN2 data

N2 data
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Model FP32 INT8 PTQ FP8E4 PTQ A8W4 QAT INT8 QAT FP8E4 QAT

ResNet18 69.72% -0.08% -1.15% 0.29% 0.71% -0.37%

MobileNetV2 71.70% -0.76% -5.65% -0.53% 0.12% -0.81%

HRNet 81.05% -0.12% -0.28% 0.22% 0.01%

DeeplabV3 72.91% -1.67% -34.98% 0.10% 1.08% 0.31%

SalsaNext 55.80% -1.58% -0.68% -0.80% -0.60%

BERT(GLUE) 83.06% -12.03% -0.26% -0.42% 0.20% 0.85%

 

   

    

    

    

    

       

 
  
 
 
 
  
 
 
  
  
 
 
  
 
 
  
  
  
  
 
 

                                     

      

      

      

      

       

Floating-Point vs. Fixed-Point

• With tensor hardware, raw computational area & energy 
dominates, making compute efficiency paramount

• With Normal data, precision yields accuracy, not 
exponent

• Beyond 2-bit exponent only harms accuracy with optimal SNR scaling

• Simple int/fixed-point yields lowest cost for any accuracy

• Floating point vs. fixed point (FXP) accumulation increases 
overhead

• Fixed-point or Kulisch accumulation best for small exponents widths: exact 
and lower cost

• DNNs typically have Normal data, but not always

• Floating point vs. fixed point studied in (van Baalen et al., 2023)

• CNNs relatively Normal - INT8 outperforming FP8 with Post Training 
Quantization (PTQ) and Quantization Aware Training (QAT)

• Transformers have outliers due to softmax (Bondarenko et al, 2023), but 
QAT naturally pulls in the outliers

• Large fixed-point capacity + floating-point 

• Fixed-point: A16W16, A16W8, A8W8, A8W4

• Floating-point: FP16*FP16

Model FP32 INT8 PTQ FP8E4 PTQ A8W4 QAT INT8 QAT FP8E4 QAT

ResNet18 69.72% -0.08% -1.15% 0.29% 0.71% -0.37%

MobileNetV2 71.70% -0.76% -5.65% -0.53% 0.12% -0.81%

HRNet 81.05% -0.12% -0.28% 0.22% 0.01%

DeeplabV3 72.91% -1.67% -34.98% 0.10% 1.08% 0.31%

SalsaNext 55.80% -1.58% -0.68% -0.80% -0.60%

BERT(GLUE) 83.06% -12.03% -0.26% -0.42% 0.20% 0.85%

       

       

https://arxiv.org/abs/2303.17951
https://arxiv.org/abs/2306.12929
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Performance & Energy vs. Bits

• Lower bit widths affect accuracy, but 
improve many other dimensions:
• Memory footprint/bandwidth/energy – TCM & DDR, 

activations & weights

• Compute bandwidth/energy

• Can scale quadratically vs. bit width:
• For matrix/convolution dominated workloads

• Linear scaling with bit width of each operand

• Smaller widths fit better into memory (more locality)

• Multiple PTQ & QAT techniques are 
used to maximize accuracy with 
reduced bits
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Pruning vs. Quantization

• At the cost of accuracy, pruning weights:

• Enables a smaller [compressed] model

• Reduces compute energy with more zeros

• Allows for skipping compute for each zero
• But, costly (area/energy) for dense case in tensor architecture

• Quantization also costs accuracy with similar 
[potential] benefits

• Zero specific lower bits rather than random elements

• Comparison from (Kuzmin et al., 2023) shown:

• Quantization consistently better for given 
compressed/packed model bits

• Focus on deep quantization rather than deep 
pruning

• But pruned/compressed models are supported

M
o
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c
c
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ra
c
y

P: Pruning Q: Quantization

https://arxiv.org/abs/2307.02973
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Target Industries

• Single architecture across a wide range of platforms

• Specific implementations with different configurations are used across industries

• Maximized energy-efficient single-core performance and multi-core when needed

• Typically, multiple concurrent uses on any given platform, including with single-core

• Programmability is key to adapting to new demands

IoT Mobile AR PC Auto Cloud
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Performance

Leading edge performance with 50% to >100% year-over-year gains

Scalar
+Vector

Scalar
+Vector
+Tensor

                           

                   

                   

                  

                

               

                                          

              

                                                              

https://ai-benchmark.com/ranking_processors_detailed.html
https://mlcommons.org/en/
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