NVIDIA’s Resource Transmutable
Network Processing ASIC
Kevin Deierling, VP Networking | August 29, 2023
From Programmability to Transmutability

- Decline of Moore’s law → Need for domain-specific architectures
- Goal → Hardware as flexible as software

Current focus on programmability
- Flexibility to perform a wide range of tasks
- Portability where possible

Future focus on resource transmutability
- Dynamic reprogramming of tasks
- Fungible resource allocation
Existing Challenges

- Traditional programmable ASICs: Fixed functions are limited in-runtime modification
- Current process: Risky, complex, not agile
 - Network level: Drain network flows and rerouting traffic, update, then bring back online
 - Device level: Prepare new program in scratch area, then switch over when complete
- Comparison to software data planes where:
 - Upgrades are straightforward
 - New functionality is easy to deploy
 - Programmability is flexible
 - Resource allocation is fungible

Conclusion — Transmutability is a must
Dynamic Workloads Require Transmutability

- Generative AI and Real-time AI cybersecurity frameworks are dynamic and evolving
 - Generative LLM AI and retrieval augmented generation
 - Real-time Mitigation: Precise threat response by injecting mitigation modules.
 - Monitoring of traffic patterns and digital fingerprinting of devices, users, and machines
 - Smart telemetry/filtering/sampling and real-time deep data analytics allows GPU to detect anomalous or divergent behavior
 - Dynamic automated quarantining, deep packet inspection, mitigation and restoration

- Just-in-time Network Optimizations: Quick detection, incorporation, and removal of policy
- Scenario-specific Network Extensions: Direct tenant program extensions and integrations
NVIDIA’s Solution: Transmutable ASICs

- Based on NVIDIA’s BlueField and Spectrum network ASICs
 - Dynamic resource allocation & reclamation
- Reprogram without packet drops, no down time
 - Low level primitives “add”, “remove”, “update”
 - Indirection - tables referenced by HW “pointers”
 - Full resource utilization - shared memory across all HW match-action processing units
- NVIDIA software stack + runtime changes ⇒ transmutable
 - *BlueField DPU*: NVIDIA P4, DOCA Flow, DPDK
 - *Spectrum Switch*: NVIDIA P4, SAI, Switch SDK
- Programmable throughout deployment with a new set of control plane APIs
 - P4Runtime extensions, backwards compatible
 - DOCA APIs
NVIDIA’s Disaggregated Architecture

Reconfigurable Match-Action Tables (RMT)
- Programmable pipeline architecture for packet processing
- Apply action “instructions” to a packet by matching keywords in the packet header vector
- Match can be exact, ternary, range or longest prefix match (LPM)

NVIDIA’s Enhanced Disaggregated RMT (dRMT)
- Compute and memory are disaggregated
- Shared memory is sharded, and accesses are load-balanced
- Match-action processors handle packets in parallel with run-to-completion model
- Enables granular reconfiguration and transmutability

RMT architecture

dRMT architecture
DPU Transmutable Pipeline SDKs

Transmutable Pipeline
- Runtime loadable
- Hybrid Pipelines
- Plug-n-Play

NVIDIA P4
- High level packet processing programming language
- Domain Specific compiler + open source P4Runtime API

DOCA Flow
- High level accelerated networking pipeline API

DPDK
- Low level polled packet processing API
ASIC Design and Architecture Features

- **Disaggregated Architecture** → Breaks resource allocation boundaries for partial reconfiguration
- **Sharded Resource Allocation** → Balances loads, avoids contention
- **Hybrid Programmability** → Efficient fixed modules + customization
- **Indirection** → Low-latency, efficient reconfigurations
- **Extended Control Plane** → Modify elements, 3 consistency guarantees

![Diagram showing program, element, and execution consistency with weaker consistency and lower transient overhead.](image-url)
Real-World Use Cases

- Benchmarks performed on NVIDIA Bluefield DPU and Spectrum switch
- Demonstrated scalability and adaptivity
- Server Load Balancer (SLB)
 - Perform optimizations at runtime to maximize throughput
- Source Based Routing and Telemetry
 - Pipeline extensions and chaining of P4 services
 - Dynamically extend pipeline with new functionality
 - Temporarily add in-situ network visibility
Server Load Balancer on BlueField

- “Pipeleon” runtime monitoring of rules/entries
 - High insertion rate event causes the cache table to “miss”
 - Miss counter threshold triggers a dynamic table reordering → throughput returns to line rate
- “Pipeleon” runtime monitoring of traffic and drops
 - Traffic pattern changes, causing a large number of policy driven packet drops
 - Drop counter threshold triggers a dynamic table reordering → throughput returns to line rate
"ELMO" source routed multicast
a. Enhancement to standard switch multicast table management
b. Encodes multicast group information inside packets → scale improvement

Postcard telemetry
a. Dynamically load a pipeline module to send telemetry data
b. Dynamically remove module once visibility no longer required

Accelerated Multicast on Spectrum
Conclusion & Next Steps

• NVIDIA’s innovation enables a truly adaptive network core, enabling network processing with resource transmutability
• Bridging the gap between hardware and software
• Transmutability as the future of network ASIC design
• Roadmap
 • Design the right APIs needed to load, control, update transmutable pipelines
 • Consistency guarantees and atomicity requirements
 • End to end solutions across multiple programmable network devices
 • Provide frameworks for performance and flexibility, but also complexity and scale
References

Runtime Programmable Switches
Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo, Yonatan Piasetzky, Arvind Krishnamurthy, and Ang Chen
NSDI 2022
https://www.usenix.org/conference/nsdi22/presentation/xing

Unleashing SmartNIC Packet Processing Performance in P4
Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa, Omer Shabtai, Yonatan Piasetzky, Matty Kadosh, Arvind Krishnamurthy, T. S. Eugene Ng, Ang Chen
ACM SIGCOMM’23, New York, NY, September 2023

A Vision for Runtime Programmable Networks
Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Hongyi Liu, Matty Kadosh, Alan Lo, Aditya Akella, Thomas Anderson, Arvind Krishnamurthy, T. S. Eugene Ng, and Ang Chen
HotNets’21

Elmo: Source Routed Multicast for Public Clouds
M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich and M. Hira
IEEE/ACM Transactions on Networking, vol. 28, no. 6, Dec. 2020

Realizing Source Routed Multicast Using Mellanox’s Programmable Hardware Switches
Matty Kadosh, Yonatan Piasetzky, Barak Gafni, Lalith Suresh, Muhammad Shahbaz, Sujata Banerjee