

LIGHTELLIGENCE

Hummingbird™ **Low-latency Computing Engine**

Maurice Steinman, Vice President of Engineering

© LIGHTELLIGENCE | All rights reserved.

Transistor Scaling Falling behind Demand

- Electronics approaching physical limits, hitting walls on power, communication and memory access
- AI model and its computing resource requirement is increasing at a much quicker pace
- Large language models cost millions of dollars to train

A New Computing Paradigm

Performance Improvement: Architecture Innovations

Architecture Innovations:

- Domain Specific Architecture (DSA)
 - Tensor Processing Units (TPU)
- Non-Von Neuman, Disruptive Architecture
- Instruction-Level Parallelism
- Transistor Efficiency Improvements
- Increased On-Chip Memory

		Check for updates
Beyond von Neu	mann	
Data-centric computation and the sca alternative to von Neumann architect	alability limits of current computing syst ure.	ems call for the developments of
Description of the second seco	<text></text>	<text><text><text></text></text></text>

Many sacrifice versatility for performance

Performance Improvement: Enlarge Silicon Area

Larger area means more transistors: multi-chip module (MCM)

Intel Ponte Vecchio 1,200 mm²

Cerebras Wafer Scale Engine 46,225 mm²

Inefficient Scaling of Performance

A better interconnect solution is needed for large MCMs

© LIGHTELLIGENCE | All rights reserved.

Optical Waveguide

Interconnect

Laser

EIC

System-in-package (SIP)

• Optical signal attenuation is small at wafer scale

- Power and latency are independent of distance
- Photonic integrated circuit (PIC) as active interposer to transmit data between Electronic integrated circuits (EICs) using waveguides

7

Optical Network-on-Chip (oNOC)

Cross - section

PIC

Optical Network-on-Chip (oNOC)

- Optical networking enables diverse topologies
- Inter-chiplet connectivity no longer limited to nearest neighbors

Optical Network-on-Chip (oNOC)

- Mapping workloads to hardware becomes more efficient with flexible network topology
- Close to linear scaling of MCM performance

Hummingbird[™]: Superior Latency Enabled by oNOC

First oNOC-powered system to run commercial workloads

Support AI inference and other applications

- oNOC All-to-All broadcast
- Ultralow latency data transfer
- Lightelligence SDK

First Computing SiP with oNOC

Interposer provides:

 Path from EIC to package substrate for power delivery and external I/O, while maintaining dense connectivity between EIC and PIC

Photonic integrated circuit (PIC)

System-in-package

Hummingbird[™] SiP Architecture

- SIMD architecture with custom ISA
 - Central instruction unit issues to each of the 64 cores in the EIC in parallel
- All-to-all broadcast
 - oNOC transports data from each core to all other cores in the EIC
 - "U" shape enables all-to-all connectivity without waveguide crossings

Hummingbird[™] Core Microarchitecture

- Bfloat16 data storage format+quantization/ dequantization
- 4-wide INT8 64x64 dot product unit with accumulator
- ALU for scalar and vector functions
- 608 KiB SRAM
- Optical broadcast interface to send and collect results with all other cores

Hummingbird[™] Design Metrics

Architecture	Hummingbird™
Compute Cores	64
Precision	INT8
On-Chip Memory	38 Mib SRAM
ECC	SECDED
System Interface	x4 PCle Gen3
System Memory	2 GB DDR4 SDRAM
Form Factor	Full Length, Dual Slot PCle
Thermal Solution	Passive
Compute API	LT-SDK
Photonic Transmitters	64
Photonic Receivers	512

Electronic Chip

- TSMC N28 HPC+
- XY: 17mm X 16.5mm
- 500M Transistors
- 0.75 km of wire length

Photonic Chip

- IMEC iSiPP 200
- XY: 21.3mm X 16.5mm
- >20m of silicon waveguides
- 580 Photodiodes
- 64 Data Modulators

Hummingbird[™] System Design

64 Core Distributed Processing Engine All-to-All Optical Network-on-Chip

Industry Compliant PCIe Form Factor

Ease of adoption with custom SDK and integration ready hardware

LIGHTELLIGENCE

Metrics

ResNet50 ML Inference run on Hummingbird using LT-SDK

Power and Performance

- oNOC latency (core-core):
 - TX_[Digital+Analog]: 3 cycles
 - Transport (pS) [Optical]: 52/787/407 (min/max/mean)
 - RX_[Analog+Digital]: 3 cycles
- oNOC data rate: 1Gbps
- Card max Power (W): 65 (35 SiP) (@Digital F_{MAX}=1GHz)
- ResNet50 Singe-Image Latency (ms): 20 (15.9 SiP)

Looking Ahead

- 3D packaging utilizing Through-Silicon Vias (TSV)s
- More advanced node implementation for EIC
- Best in class, customer-specific designs

Looking ahead: Reticle Stitching

Lightelligence Solutions

OMAC: Optical Multiply Accumulate Operation

ONOC: Optical Network on Chip

ONET: Optical Inter-Chip Networking

Endnotes

This document, and the information it contains, are provided for informational purposes only and may contain technical inaccuracies, omissions and errors. All information contained herein, and all statements about Lightelligence's strategy, developments and current or future product plans, are subject to change at any time. This document is provided without a warranty of any kind and may not be relied upon.

The information in this document is confidential and proprietary to Lightelligence and may not be disclosed without the permission of Lightelligence.

© 2023 Lightelligence, Inc. All rights reserved. Lightelligence, Hummingbird and Hummingbird ONOC are trademarks of Lightelligence, Inc.

LIGHTELLIGENCE

info@lightelligence.ai