FABRIC8LABS

Hot Chips - 2023

Ian Winfield | Joseph Madril | Tim Ouradnik | Michael Matthews | Guillermo Romero

Fabric8labs con contact@fabric8labs.con

Overview

- Increased power dissipation requirements in high-performance computing applications are driving innovation in liquid cooling technologies to improve component and system-level heat extraction
- The current state of the art liquid cooling cold plate technology is based on microchannels but these designs have limited performance
- A 35% improvement in thermal resistance was demonstrated by using a complex, 3D printed cold plate produced via Electrochemical Additive Manufacturing (ECAM)
- ECAM provides a solution for mass-manufacturing of application optimized thermal management products that employ geometrically graded structures and generative AI-based designs

Demand for Liquid Cooling in Data Centers is Growing

Thermal Management Drives 40% of

Total Cost of Ownership (TCO) is a key driver for thermal management opportunities

Reference: Data from Dell'Oro Group (2022)

Higher-power compute requires liquid cooling solutions (ASHRAE Tech Committee)

> Reference: Image Adapted from ASHRAE Technical Committee 9.9, 2021

Liquid Cold Plate Performance has Been Limited by Straight Channels

Cold Plate Performance and Optimization

 $Performance \propto \frac{1}{Rth * P_{pump}}$

- Thermal Resistance (R_{th})
- Pump Power (P_{pump}) \propto Pressure Drop (Δp)
- Temperature Uniformity, to manage nonuniform heat inputs

Image Reference: Kandlikar, S. and Hayner, C., 2011

State of the Art: **Microchannel Cold Plate**

Image Reference: Wieland Microcool

Straight Channels Have Limited Performance

Convective heat transfer deteriorates along the axial direction with the development of the boundary layer

Reference: Jin, L.W., et al, 2014

Reference: Ortega, A,, et al., 2022

Cannot simply increase flowrate due to erosion limits of copper and tubing (~ 1.5 - 2 m/s)

Additive Manufacturing (AM) Unlocks a New Wave of Thermal Products

Previously Impossible to Manufacture Designs to Maximize Conductive & Convective Heat Transfer

Triply Periodic Minimal Surface (TPMS) Structures

High Surface Area, **Shape-Optimized Structures** **Generatively Designed Solutions** to Optimize for Thermal & **Hydraulic Performance**

Reference: Diabatix. Inc. 5

Application Specific Thermal Solutions to Address Non-Uniform Temperatures

Reference: Zhang, J. (2023)

A Novel AM Approach: Electrochemical Additive Manufacturing (ECAM)

ECAM Brings Additive Manufacturing Capability to the Electronics Value Chain

	Incumbent Additive Manufacturing (AM) Technologies		N	
	Binder Jetting	Laser Powder Bed Fusion	Elect Mar	
Feedstock	Med-Cost Metal Powder	High-Cost Metal Powder	L	
Metal Fusing Process	Sintering	Laser Melting		
Post-Print Processing	Cure (Green Part), Depowdering, Sintering	Depowdering, Thermal Stress Relaxation, Support Removal		
End part cost, Copper (\$/kg)	\$\$\$	\$\$\$\$		
Minimum Feature Size	500 µm	150 µm		
Surface Roughness, Ra (micro-inches)	> 250	> 250		
Conductivity (%IACS)	~ 90%	90 - 95%		

New AM Capability

trochemical Additive nufacturing (ECAM)

N-Cost	Motal	Salte
W-003	metai	Julia

Electrodeposition

Water Rinse

\$

50 µm

< 50

94 - 98%

Process Overview: Electrochemical Additive Manufacturing (ECAM)

© 2023 Fabric8Labs, All Rights reserved

ECAM Enabled Thermal Management Products

Additive Design Advantage

Micro scale feature resolution High purity copper Dense structures as-printed Design freedom

ECAM produces high resolution, complex topological structures in high-purity copper enabling optimized thermal components at competitive economics.

High Thermal Conductivity

8

Competitive Economics Low-cost feedstocks Room temperature processing

Deep Dive – ECAM Printed Features on Copper Substrates

Mixed Manufacturing Method Enables Optimized Thermal Devices at Scale

Mount and mechanical polish optical inspection; no visible interface between substrate and printed structure Chemically etched surface to expose grain boundaries & interface (Etchant: FeCl₃(H2O)_x+ HCI) 50x Magnification

Metallurgically bonded, fine grained Cu microstructure.

Focused ion beam cut + imaging

Initial Structures Evaluated for Thermal Performance

Incumbent Microchannel vs. High-Resolution Gyroid Structures

Design	Incumbent Microchannel	Gyroid 50% Open	8
Wall Thickness, µm	100	100	
Surface Area per Unit Volume (cm²/cm³)	108.6	74.4	
Open Volume	49.2%	50.3%	

Gyroid 0% Open

133

31.5

80.2%

ECAM Printed Gyroid Structures

High-Resolution TPMS Structures Printed onto OFHC Copper Sheet Stock

Nominal dimensions

1	2	2
I	J	J

Gyroid Prints - Dimensional Inspection

High-resolution Gyroid Structures Printed with Excellent Feature Accuracy

Gyroid, 50% Open Volume

	Nominal	Measured	StDev
Wall Thickness, µm	100	107	11.4
Pore Size, µm	590	572	24.4
Unit Cell, µm	766	741	16.5

Gyroid, 80% Open Volume

	Nominal	Measured	StDev
Wall Thickness, µm	133	113	11.0
Pore Size, µm	1840	1806	8.5
Unit Cell, µm	2045	2034	51.4

20 samples for each feature measurement

Cold Plate Test Setup and Simulation

Thermal Performance Results

ECAM Enabled Structures Significantly Outperform Incumbent Microchannel

© 2023 Fabric8Labs, All Rights reserved

14

50% Gyroid Structure showed > **35% improvement** in thermal performance at equivalent pumping

al al ad ad ad ad

Conclusions and Future Work

Electrochemical Additive Manufacturing (ECAM) was shown to be capable of producing high-performance thermal management devices with greater than 35% better performance than incumbent technologies.

Application specific cooling structures that leverage complex and customized designs in conjunction with ECAM's unique capabilities have great potential to realize optimized cooling performance.

© 2023 Fabric8Labs, All Rights reserved

Developing partnerships and tools that align with ECAM capabilities

Summary

- Increased power dissipation requirements in high-performance computing applications are driving innovation in liquid cooling technologies to improve component and system-level heat extraction
- The current state of the art liquid cooling cold plate technology is based on microchannels but these designs have limited performance
- A 35% improvement in thermal resistance was demonstrated by using a complex, 3D printed cold plate produced via Electrochemical Additive Manufacturing (ECAM).
- ECAM provides a solution for mass-manufacturing of application optimized thermal management products that employ geometrically graded structures and generative AI-based designs

References

ASHRAE Technical Committee 9.9, Emergence and Expansion of Liquid Cooling in Mainstream Data Centers, White Paper for Mission Critical Facilities, Data Centers, Technology Spaces, and Electronic Equipment, 2021.

Chen, L, & Wemhoff, AP. "Predictions of Airside Economization-Based Air-Cooled Data Center Environmental Burden Reduction." Proceedings of the ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. ASME 2022. V001T01A001. ASME. https://doi.org/10.1115/IPACK2022-92005

Dell'Oro Group, Fung, B. & Beran, L. "Achieving Sustainable Data Center Growth." Whitepaper, 2022 https://www.delloro.com/knowledge-center/white-papers/achieving-sustainable-data-center-growth/

Diabatix, inc.; (Image Reference) URL: <u>https://www.diabatix.com/</u>

Jin, L.W, P.S. Lee, X.X. Kong, Y. Fan, S.K. Chou, Ultra-thin minichannel LCP for EV battery thermal management, Applied Energy 113 (2014) 1786–1794

Kandlikar, S. and Hayner, C., Liquid Cooled Cold Plates for Industrial High-Power Electronic Devices—Thermal Design and Manufacturing Considerations, *Heat Transfer Engineering* Vol. 30, No. 12, p918-930, 2009

nTopology, inc.; (Image Reference) URL: <u>https://ntopology.com/generative-design-guide/</u>

Ortega, A., C. Caceres, U. Uras, D. Kisitu, U. Chowdhury, V. Radmard, A. Heydari, Determination Of The Thermal Performance Limits For Single Phase Liquid Cooling Using An Improved Effectiveness-ntu Cold Plate Model, IPACK2022-97421

Wieland Microcool, (Image Reference) URL: https://www.microcooling.com/technology/micro-deformation-technology/

Xie, X.L., Tao, W.Q. & He, Y.L., "Numerical Study of Turbulent Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink." J. Electron. Packag. Sep 2007, 129(3): 247-255

Zhang, J. et al., "Full-Chip Power Density and Thermal Map Characterization for Commercial Microprocessors under Heat Sink Cooling, IEEE, final publication pending as of 2023

FABRIC8LABS

contact@fabric8labs.com

18

© 2023 Fabric8Labs, All Rights reserved