arm

CSS N2: Arm Neoverse N2 Platform, Delivered to Partners as a Fully Verified, Customizable Subsystem

Hot Chips 2023

Anitha Kona, Lead System Architect & Fellow, Arm August 28th, 2023

© 2023 Arm

The Pressure on Silicon Development

Advanced Node Cost

Source: IBS Global Semiconductor Industry Service Report – July 2022

Time to Market Demands

Performance MORE, MORE, MORE

Validation NO SILICON SPINS

REDUCE IT, RAMP IT

Need for Specialized Silicon

(1) 1B 5G SUBSCRIBERS

Sustainability

Source: 2023 data. Cisco, Statistica/IDC

arm NEOVERSE

DIFFERENTIATION & CUSTOMIZATION

armneoverse

The Relief: Arm Neoverse Compute Subsystem (CSS)

Fastest Path toProduction Silicon

+ World LeadingPerformance

Leading Edge
 Technology

- Neoverse CSS delivers PPA optimized compute in leading edge technology node – fully validated RTL, pre-tuned implementation
- Deployment ready for emerging technologies –
 PCIe Gen5, CXL-based memory-pooling
- Enables custom or heterogenous integration accelerators or specialized compute
- Can support chiplet-based designs
- SystemReady with reference SW stack

Arm Neoverse CSS N2 Cloud-to-Edge Differentiated Solutions

armneoverse

Arm Neoverse CSS N2 ("CSS Genesis")

Feature	5nm Specification					
# of CPU Cores	24/32/64 N2 CPUs, 2.1-3.6GHz, 5nm advanced process					
	SPECint2k17_Rate(64T) est: ~250 (3.0GHz)					
	L1: 64KB I-cache (parity), 64KB D-cache (ECC)					
Cache hierarchy	Configurable up to 1MB L2 private cache (private, ECC)					
	Configurable up to 64MB system-level cache (shared, ECC)					
Memory/IO Connectivity	Provides standard AMBA CHI/AXI interfaces to support					
	Up to 8x 40b DDR5 or LPDDR5 channel					
	Up to 4x x16 PCIe/CXL Gen5 lanes					
	Bifurcation support up to x4 for each x16 PCIe lanes					
Die-to-Die connectivity	Support for SMP compute or accelerator attach with UCIe or partner-specific D2D PHY					
General I/O	Expansion interface to connect slower speed peripheral like USB/ I3C/QSPI/etc.					
System management	System Control Processor(SCP)/					
	Manageability Control processor(MCP)					
CSS area (24/32/64c)	~53/61/198 mm sq					

armneoverse

Arm Neoverse CSS N2 Block Diagram

CSS is SystemReady **c**ompliant to: Arm Base System Architecture 1.0 Arm Server Base System Architecture 6.1 Arm Server Base Boot Requirements 1.2

Processor Block

armneoverse

System Control and Management

-- System Control Processor (SCP):

- SCP is trusted core responsible for controlling system-related functions
- Controls resets, clock control, power and voltage domains
- + Responsible for all power management control
- Manageability Control Processor (MCP):
 - MCP is a satellite controller communicating with the external Baseboard Management Controller (BMC) for the following functions:
 - + On-chip management
 - System reliability, accessibility, and serviceability (RAS) handling
 - + Event logging and communication alerts

AVID

System MMU and Interrupt Controller

- System MMU (MMU-700):
 - Compliant with SMMU architecture version 3.2
 - Provides address translation and virtualization support
 - Armv9 & Armv8.4 support:
 - MPAM, Secure-EL2 for multiple secure OS's and TLB range invalidate
 - Single or two-stage address translation for PCIe and on-chip accelerators/devices

- GIC:

 The GIC-700 (GICv4.1) is a generic interrupt controller that handles interrupts from peripherals to core and between cores

System Interconnect

-- Neoverse CMN-700:

- Mesh based coherent interconnect
- Shared system level
 cache (SLC) for CPUs
 and IO
- Latest Armv9.0-A and AMBA 5 features (Atomics, Stashing, and RAS)
- System Cache Groups for affinity and isolation
- + Fully coherent multichip support

Accelerator Attach

 CSS N2 provides an IO block with all the interrupt and address translation logic required for partners to add their specific on-chip accelerators or PCIe controllers for external devices

Core Scaling

- + CSS N2 allows for connecting
 - -- 2 chiplets per socket
 - -- 2 sockets per system
- Scale up to 256 Neoverse N2 cores, delivering more performance in a fully coherent fashion
- SMP protocol for both chip-to-chip
 (C2C) and socket-to-socket (S2S)
 communication
 - C2C links, can be UCle or partner specific C2C PHY
 - Standard CXL PHY for S2S

Multichip Interfaces

Socket 0

CMN Gateway for SMP Connections

armNeoverse

CMN Gateway for CXL Type 3 Memory Expansion

arm NEOVERSE

Arm Neoverse CSS N2 Platform Floorplan Example

arm NEOVERSE

Arm Neoverse CSS Platform Physical IP

- Arm builds physical IP including standard cell libraries, fast memory cache instances(FCIs) optimized for CSS
- N2 POP core implementation with optimized
 PPA
 - + Core and mesh configuration
 - Metal stack
 - + Floorplan
 - -- EDA flow
 - Sign-off
- N2 POP is delivered with reference flow scripts, physical IP, supporting utilities and documentation
- CMN-700 and HN-F FCI packages optimized for configuration and PPA

Neoverse Reference Design Platform Software

Integrated reference stack targeting a Fixed Virtual platform (FVP) model of the system

- Designed to provide an extensible reference, bootstrapping partner engineering development. RTL for FPGA build.
- + Reference stack to demonstrate:
 - Platform firmware ports for subsystem topology
 - Integrating multiple components (firmware, OS, services)
 - Software features
 (boot flows, security, power management, etc.)
- Arm Neoverse Platform Software documentation
 - + <u>https://neoverse-reference-</u> <u>design.docs.arm.com/en/latest/index.htm</u>

The Future of Infrastructure is Built on Arm

- Neoverse CSS improves time-to-market and reduces development cost by delivering a pre-integrated, prevalidated, PPA-optimized compute subsystem to customers
- CSS N2 is the first generation of Neoverse CSS products, offering customization while leveraging over a decade of platform and software ecosystem standards development

+	+						
arr						Thank You	
						+ Danke	
						Gracias + Grazie	
						谢谢	
						ありがとう	
						Asante + Merci	
						감사합니다	
						-धन्यवाद -	
						Kiitos شکر ً ا	
						ধন্যবাদ	
© 2023 Arm						תוְדה +	

+	+						
arr						Thank You	
						+ Danke	
						Gracias + Grazie	
						谢谢	
						ありがとう	
						Asante + Merci	
						감사합니다	
						-धन्यवाद -	
						Kiitos شکر ً ا	
						ধন্যবাদ	
© 2023 Arm						תוְדה +	