What is Root of Trust

<table>
<thead>
<tr>
<th>Identity</th>
<th>Manufacturer Identity aligned to TCG DICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>Code & configuration posture of the device.</td>
</tr>
<tr>
<td>Lifecycle</td>
<td>Debug mode (ON/OFF), modes of operation</td>
</tr>
<tr>
<td>Ownership</td>
<td>Vendor authored firmware only, with stateless Owner Authorization</td>
</tr>
<tr>
<td>Attestation</td>
<td>Identity & Measurement reporting</td>
</tr>
</tbody>
</table>

Set of security primitives that form the foundation for building more advance security features
Root of Trust – State of the Industry

There are many solutions...

Industry fragmentation...

Many deficiencies...
What is Caliptra

Caliptra (*Spanish, ‘root tip’) an open-source silicon Root of Trust

Consistency of security primitives that underpin higher-level capabilities and operational behaviors.

Transparency of security mechanisms of confidential cloud devices.
Why Consistency is Important

- Heterogeneity of RoT implementations is massive drain on our operations; customer experience.
- Confidential device measurements are tenant visible.
- Interoperability, components intercommunicate and report to measurement.
- Functional consistency across operational flows, tightly coupled to life-cycle and live-site.

Tenant Experience

Microsoft Azure Attestation

System Interoperability
Root-of-Trust is a foundational hardware security primitive that bootstraps higher-level security capabilities.

Transparency builds trust... provides assurance of the hardware mechanics for measurement.

Caliptra akin to a door that records entry into a room, don’t care about décor, just security at entry and exit.

Lower silicon burden of proof through transparency of RoT, narrows verification and audit.

Transparency on what enters and leaves, not explicitly what’s inside.
➢ Open-source VeeR core, Instruction RAM (ICCM) & Data RAM (DCCM) physical separation, No DMA access from any peripherals/external SOC into ICCM/DCCM, No writes into ICCM on ROM-exit

➢ Side-channel protected Crypto HW & No FW access to security keys/assets (more on this later)

➢ Caliptra as-a-whole is an APB-device (can only speak when spoken to!)
 ➢ Cannot ‘master’ random transactions to rest of the SOC
 ➢ No integrated peripherals required
- DICE (Device Identity Composite Engine) is implemented in HW
- Fuses are external but security critical fuses itself are decrypted with Caliptra internal class keys (by HW)

- **Cryptos:** ECC384, HMAC-DRBG, SHA256, SHA384/SHA512, HMAC-384, Integ-TRNG, DICE-obfuscation-Engine (DOE)
 - Refer to Caliptra spec on the RFC references and side channel mitigation information.

- Key Vault & PCR Vault are implemented in HW
 - FW (ROM or run-time) cannot access keys; only key-handles are available
 - PCRs can only be ‘extended’
 - Key vault also implements various key protection mechanisms (ex: a key can only used ‘ECC signing’)
 - PCR signing is also fully implemented in HW (FW can only ‘request’ for PCR signing – cannot specify the key or change PCRs that are being signed)

- Assets are cleared and Cryptos are zeroized in debug/scan modes
Caliptra was open sourced on October 18th, 2022 with multiple partners planning products.

Built supporting industry standards; TCG DICE, DMTF SPDM, OCP Secure-boot, Attestation, Recovery.

Microsoft, Google, AMD, Nvidia are founding project partners.

Design (RTL & ROM) release in August’23. Run-time FW will follow that immediately.
Development & Discussions in the open – no more NDA requirements (CLA is still required)

CHIPSALLIANACE Caliptra Public WG meeting – Every Friday 9am PST

Call for Action

- Best technologies blossom with “brain share” & collaboration
- Security is the critical pillar to protect all “our” data and RoT technologies is the “Caliptra” of it