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PIM/PNM on Memory Hierarchy and Energy Reduction 
• Data movement consumes a lot of energy even for simple computation 

• PIM/PNM technology can reduce energy consumption within a typical memory hierarchy 

• PIM/PNM device for each layer must meet specific requirements: bandwidth(BW), power, capacity, etc. 
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Traditional Approach to Overcome Memory Bottleneck 

• While there are various methods to increase BW, it is difficult to achieve a dramatic increase 
- Limited by # of PCB wires, # of CPU ball, and thermal constraints  

• Increasing # of the balls and PCB wires is physically and thermally bounded and is a expensive solution 
- MCR-DIMM, PAM3/4 signaling IO, 2K-IO or 3D stacking     
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CXL solution, Trend to Pay Attention to 
• CXL is strong candidate for memory hierarchy to address performance and density 

• Successful power-on of memory expander, SSD/pooling solutions are next big-thing 
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Bottleneck in GPT: Linear Layers in Generation Stage 

• Main target: transformer decoders used in ChatGPT, GPT-3 
- Linear layers in multi-head attention(MHA) and feed-forward networks(FFN) 

• Focus on memory-bottleneck in Generation stage 
- Generation Stage shows poor performance with GPU due to its memory-bound & sequential characteristic 

<Transformer> <Four major matrix multiplication block> 
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GPT Profiling Result 

• GPT workload consists of Summarization(computing-bound) and Generation(memory–bound) 

• GEMV portion can be 60–80% of total generation latency, which are the target of PIM/PNM 

*Profiling result is measured in A100 System (DeepSpeed + GPT-J 6B, FP16, Input/Output token:7/46) 

  GPT-j: Google JAX framework  Stage Computation Latency 

SUM 78.95 GFLOP 7.62 ms 

GEN 11.28 GFLOP 6.58 ms 

GEMVGEN VECTOR GELU SOFTMAX RESIDUAL ETC GEMMSUM 

Latency  3.8 1.8 2.2 1.4 6.5 

0% 80% 85% 90% 95% 100% 

Number of 

Operations 

Matrix-Matrix/Vector Multiplication Non-Linear Function 

2.12 82.27 

13.46 86.53 

https://community.openai.com/t/how-does-chatgpt-have-such-massive-token-limit/25738/6 
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Utilization and Execution Time Breakdown  
• Most of the execution time is spent for the memory copy from the host CPU memory to the GPU memory 

• Utilization for performing GEMV operations (Generation stage) is seriously low, compared to GEMM 

• As # of output tokens increases, GEMV operations dominate the inference time 
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Acceleration by PIM/PNM on Generation stage 

• Generation stage on GPT requires high capacity and bandwidth memory 

• MHA and FFN can be fully offloaded to PIM/PNM, exploiting full bandwidth provided by PIM/PNM 

• As a result, PIM/PNM can significantly reduce the time and energy spent on inference 
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PIM Solution  
Redesigned to Advance AI : HBM-PIM / LPDDR-PIM 
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Energy Advantage of PIM on Generative AI 
• Since OpenAI focuses on developing new AI technologies and pushing the boundaries of what can be done 

with AI, it is likely that they will explore the use of PIM technology in the future. 

• In ISSCC 2023, AMD mentioned 

• Key algorithmic kernels can be executed directly in memory, saving precious communication energy 

• PIM can reduce energy by 85% compared with conventional HBMs 

[source] AMD ISSCC  

Future HBM-PIM concept 

[source] Samsung, MemCon  

Processing-in-Memory 
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Generative AI on HBM-PIM 
• Experimental setup: GPT-J (6B, 32 input tokens), single AMD MI100-PIM GPU 

• About 2x greater system energy efficiency compared to the GPU with a normal HBM 

• GPT can be accelerated by more than 2x over baseline 
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Architecture of HBM-PIM Cluster 

• Installed 96 AMD MI100 GPUs fabricated with HBM-PIM  

• Accelerate large-scale workloads with high energy efficiency and low latency 

Server node 

· 8 MI100-PIM GPUs per node 

AMD MI100-PIM GPU 

· Capacity : 24GB (4 cubes) 

· PIM performance : 4.9 TFLOPS 

. GPU performance : 184.6 TFLOPS (FP16) 

HBM-PIM cluster 

· Total 96 MI100-PIM GPUs in a cluster 

. 12 nodes interconnected 

   through 200G InfiniBand network  

   (bi-section bandwidth : 1.2TB/s) 

. Total memory capacity : 2.25TB 

. Total PIM performance : 471.9 TFLOPS 

. Total GPU performance : 17.7 PFLOPS (FP16) 



14 

• DeepSpeed MoE replaces “T5LayerFF” layers to accelerate T5-large model with PIM  

• The MoE layers are updated to use our PimPyLibrary* APIs 

MoE deployment on HBM-PIM cluster T5-MoE model architecture 
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* PimPyLibrary is a python library for providing PIM-enabled AI operators. PIM SDK provides not only PimPyLibrary but also full SW stack for utilizing PIM 

(Mixture of Experts)  Workload : T5(Transformer)-Based MoE Model 
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Performance gain 
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PIM S/W Stack for AI 
• Support existing AI frameworks (e.g., PyTorch and TF) for users to utilize PIM functions  

• PIM Runtime Library: Apply PIM and provide operator-level optimizations during PIM operation 

• PIM AI Compiler: Provide graph-level optimizations during end-to-end execution 
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SYCL GEMV performance 
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Promising Standard Programming Models 

• PIM-SYCL accelerates upcoming HPC/AI applications on heterogeneous platform 

- SYCL supports CPU/GPU/NPU/FPGA in modern C++ template 

• PIM-OpenACC is under development for legacy scientific applications 

- OpenACC enables incremental parallelization from C/Fortran serial code 

SYCL GEMV source code 

// Buffer Allocation 

buffer<sycl::half, 2> M{matrix, range<2>{N, N}};  

buffer<sycl::half> X{in, range<1>{N}};  

buffer<sycl::half> Y{out, range<1>{N}};  

 

// Parallel Execution 

q.submit([&](ext::samsung::pim_handler &ph) { 

  ext::samsung::pim_accessor accM{M, ph, sycl::read_only}; 

  ext::samsung::pim_accessor accX{X, ph, sycl::read_only}; 

  ext::samsung::pim_accessor accY{Y, ph, sycl::write_only, 

    sycl::property::no_init{}}; 

 

  ph.gemv(accY, accX, accM); 

}); 

w/ PIM 

w/o PIM 
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• OneMCC (Memory Coupled-Computing) is an open & standard S/W for PIM, PNM, CXL solutions 

• Plan to provide standard programming model to support multi-architecture and domain 

• Boost AI and HPC workloads with a variety of accelerators like CPUs, GPUs, and NPUs 

OneMCC S/W Standardization (To be) 
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Processing-in-Memory for On-device Generative AI 
• Expanding On-device AI Necessity: 

- Data center costs and power consumption are increasing due to the growing demand for cloud AI 

- Privacy concerns are rising as sensitive data is transmitted to the cloud for processing 

- Network connectivity is not always reliable or available, particularly in remote areas 

• LPDDR-PIM  improves battery life by preventing memory over-provisioning just for bandwidth 
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LPDDR-PIM Concept 
• Improve the 4.5x performance and save 72% of energy in the system with in-DRAM processing 

- Performance: Utilize up to 8× higher in-DRAM bandwidth by multi-bank parallel operation 

- Energy Efficiency: Reduce data movement energy by utilizing PIM unit  
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LPDDR-PIM Features 
• Peak internal bandwidth: 102.4 GB/s 

- Using Bank-level parallelism, 8x bandwidth of the base LPDDR product 

• Supporting native integer/floating point arithmetic and logical (and/or/…) operations 

• Peak performance: 102.4 GFLOPS/s (FP16), 204.8 GOPS/s (INT8) 

• Acceleration target: memory-bounded operations such as BLAS1 and BLAS2 

• Samsung can support LPDDR-PIM simulator package to measure performance gain & energy reduction 

Bank Parallelism  

[ RNNT ] [ Transformer ] [ GPT2 ] 

Perf. gain: 4.51x 2.85x 4.47x 

Energy reduction: -72.5% -58.5% -70.6% 

RNNT Transformer 

0.2 

0.6 

1 

N
o

rm
a
li
ze

d
 

E
xe

cu
ti

o
n

 T
im

e
 

GPT2 

100 

60 

20 

N
o

rm
a
li
ze

d
 

E
n

e
rg

y
 (

%
) 

baseline (NPU only) 

40 

80 

End-to-end inference on AI application (simulation-based) 

PIM Unit 

Bank 

Bank 

PIM Unit 

Bank 

Bank 

BLAS1: Element-wise addition/multiplication  

            or layer normalization 

BLAS2: vector-matrix multiplications 



22 

LPDDR-PIM Architecture 
• PIM Unit is placed between every 1 bank (maximum performance) or 2 banks (moderate area overhead) 

• PIM Unit: 256-bit SIMD FPU and registers (~640 bytes per PIM block) 

– Supporting operations: FP16 multiplication, FP32 accumulation, int8 arithmetic, etc. 

– PIM registers : Instruction (IRF), Vector (VRF), and Scalar (SRF) 
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LPDDR-PIM System Performance/Power Analysis 

• Evaluate the performance and power consumption of GPT2 

• LP5-PIM improves energy efficiency by shorter execution time 

 

 

 

 

 

 

 

• Power consumption of DRAM internal component (red) increases proportionally 

• Power consumption of global I/O bus (light red) and I/O PHYs (light blue) considerably decreases 
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* Simulation experiment uses 4 memory (lp5/pim) channels 
* lp5pim (DRAM cell to PIM block) includes ACT, PRE, IDLE, and REF 
* The result of simulation is that more than 99% of memory traffic decreases by PIM 
* host (core) includes processing and IDLE power 

[host + lpddr5] [host + lp5pim (8x: 1 bank/PIM block)] [host + lp5pim (4x: 2 bank/PIM block)] 
* The power ratio is 17.9% (DRAM cell to IOSA), 31.3% (IOSA to IO), 31.1% (PHY), and 19.7% (core) for baseline. 
* The power ratios are 85.3% (DRAM cell to PIM block), 14.6% (core), and 0.1% (etc) for lp5-pim(8x), and 76.9% (DRAM cell to PIM block), 23% (core), 
and 0.1% (etc) for lp5-pim(8x), respectively. 



CXL-PNM 
Industry’s 1st CXL-PNM (Processing-near-Memory)  
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• A CXL-based Processing-near-Memory (PNM) Solution 

• Two types of CXL-PNM: on CXL controller and on device memory 
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• Heterogeneous compute unit (PE Array and Adder-Tree) on PNM Engine 

– Adder-tree designed to perform GEMV operation (Generation stage) 

– PE Array for acceleration of GEMM operation (Summarization stage) 

 

 

CXL-PNM Architecture for GPT 
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• CXL-PNM is able to be used for a wider range of systems including AI/ML accelerators 

• Compared to other solutions, it can give unique trade-off among capacity, bandwidth, and power 

• CXL-PNM can provide 512GB capacity and 1.1TB/s bandwidth 

 

512GB 1.1TB/s CXL-PNM Concept 

CXL-PNM Module Concept 512Gb DRAM Package 
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• CXL-PNM software stack for users to seamlessly and transparently utilizes the CXL-PNM platform 

• CXL-PNM software stack includes user-level of library, runtime and kernel level of device driver 

• CXL-PNM software stack supports two execution paths 
• Native execution path – Automatically offload PNM operation without modification of application source code 

• Direct execution path – Explicitly call PNM operations on the user application 

CXL-PNM Software Stack 
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• End-to-end performance evaluation of GPU and CXL-PNM with the same number of devices 

– CXL-PNM gives 2.9× higher energy efficiency, only 10.8% lower throughput, compared to A-GPU 

– However, CXL-PNM with large capacity can accelerate large-scale LLMs w/o any communication overhead 

– Multiple CXL-PNM can offer 4.4× higher energy efficiency and 53% higher throughput than multiple GPUs  

 

Energy and Throughput Comparison for LLM 

• Single Device (OPT-13B), 8 Device (OPT-66B), input token(64) output token(1024) 
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CO2 Emission Reduction by CXL-PNM 
• Operating/Environmental (Energy/CO2) cost of GPU/CXL-PNM appliance with eight devices 

– GPU appliance is 2.8× more expensive than CXL-PNM appliance for the environmental cost 

– Operating efficiency of CXL-PNM appliance reduces the amount of CO2 emission   

– CXL-PNM appliance is 4.3× more efficient than that of GPU appliance   
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Appliance 

CXL-PNM 
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Environmental Efficiency 
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4.26x 

• GPU Appliance (A-GPU server System with 8 A-GPU, FasterTransformer), CXL-PNM Appliance (8 CXL-PNM Card) 

4.28x 
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Samsung AI memory 


