
Samsung PIM/PNM for Transformer based AI 

 : Energy Efficiency on PIM/PNM Cluster 

Jin Hyun Kim, Yuhwan Ro, Jinin So, Sukhan Lee, Shin-haeng Kang, YeonGon Cho, Hyeonsu Kim, Byeongho Kim, Kyungsoo Kim ,Sangsoo Park, Jin-Seong Kim, Sanghoon Cha, Won-Jo Lee, Jin Jung, 

Jong-Geon Lee, Jieun Lee, JoonHo Song, Seungwon Lee,  Jeonghyeon Cho, Jaehoon Yu, and Kyomin Sohn 

Samsung Semiconductor 



2 Samsung Semiconductor 

0

1 

Title in Samsung Sharp Sans Bold (34) 

Body text in Samsung Sharp Sans Medium (16)  

Insert more text here. 

Use this page when Samsung fonts are available.  

Subtitle in Samsung Sharp Sans Bold (24) 

Memory Trends 
and Bottleneck  
in HPC/AI  

01 

Samsung Memory 
AI Solution 

02 

• Cache Level LLC DRAM, HBM-PIM (Processing-in-Memory)  
• Memory Expander, CXL-PNM (Processing-near-Memory) 
   , CXL-SSD 

• Storage : SmartSSD, PBSSD 

Index 



3 

PIM/PNM on Memory Hierarchy and Energy Reduction 
• Data movement consumes a lot of energy even for simple computation 

• PIM/PNM technology can reduce energy consumption within a typical memory hierarchy 

• PIM/PNM device for each layer must meet specific requirements: bandwidth(BW), power, capacity, etc. 

 
Energy Cost of Data Transfer Computing Coupled Memory Hierarchy  

ALU 

ALU 

ALU 

Normalized Energy Cost* 

RF 

PE 

Buffer 

DRAM 

0.5-1.0 kB 

1 x (Reference) 

 

200 x 

DRAM Global  
Buffer 

PE PE 

PE ALU 
Fetch data to run  
a MAC operation here 

ALU 

ALU 

NoC: 200 – 1000 PEs 

100 – 500 kB 

1 x 

2 x 

6 x 

Source: * Y.-H. Eyeriss, 2016 ISCA 

RF 

RF 

Reg 

LLC, LLC-DRAM 

Storage 

(SSD, PBSSD, MS-SSD)  

Extreme BW and Power 

Extreme capacity, Moderate cost 

[Memory requirement] 

DDRx, LPDDR, LPDDR-PIM 

CXL-DRAM, CXL-PNM 

(~256GB) 

(~512GB) 

(~8PB) 

(~24GB) 

(~256MB) 

HBM, HBM-PIM 

High capacity, BW for AI, Low power  



4 

C C C C 

Bus 

M M 

C C C C 

C C C C 

C C C C 

M M M M 

Traditional Approach to Overcome Memory Bottleneck 

• While there are various methods to increase BW, it is difficult to achieve a dramatic increase 
- Limited by # of PCB wires, # of CPU ball, and thermal constraints  

• Increasing # of the balls and PCB wires is physically and thermally bounded and is a expensive solution 
- MCR-DIMM, PAM3/4 signaling IO, 2K-IO or 3D stacking     

Memory BW is continuously  

requested due to AI application  

and multi-core host 

DIMM based  
system 

Device based  
system 

Package on  
Package 

MCR-DIMM(Multiplexer Combined Ranks DIMM) 

2K-IO 2D or 3D stacking  

PAM 3/4(Pulse Amplitude Modulation) 

[source] SK Hynix  [source] Micron  

[source] Samsung 



5 

CXL solution, Trend to Pay Attention to 
• CXL is strong candidate for memory hierarchy to address performance and density 

• Successful power-on of memory expander, SSD/pooling solutions are next big-thing 

 
CXL is a high performance, low latency protocol 

that leverages PCIe physical layer 

CXL is an open industry standard with broad industry support 
 

Processor 

PCle Connector 

  PCIe channel 

PCIe Card CXL Card 
Type 1 Type 2 Type 3 

Processor Processor Processor 

CXL CXL CXL 

Usages Usages Usages 

Protocols Protocols 
• CXL.io 
• CXL.cache 

• CXL.io 
• CXL.cache 
• CXL.memory 

• CXL.io 
• CXL.memory 

Accelerator Accelerator 
NIC 

Memory 
Buffer 

Cache Cache 

• PGAS NIC 

• NIC atomics 

• GP GPU 

• Dense computation 

 

• Memory BW expansion 

• Memory capacity expansion 

• Storage class memory 

D
D

R
 

D
D

R
 

D
D

R
 

D
D

R
 

D
D

R
 

D
D

R
 

H
B

M
 H

B
M

 

M
em

or
y 

M
em

or
y 

M
em

or
y 

M
em

or
y 

Caching Devices / 
Accelerators 

Accelerators with Memory Memory Buffers 

Protocols 



6 

Bottleneck in GPT: Linear Layers in Generation Stage 

• Main target: transformer decoders used in ChatGPT, GPT-3 
- Linear layers in multi-head attention(MHA) and feed-forward networks(FFN) 

• Focus on memory-bottleneck in Generation stage 
- Generation Stage shows poor performance with GPU due to its memory-bound & sequential characteristic 

<Transformer> <Four major matrix multiplication block> 

<Summarization> 

Computation 

Memory Load 

& Store 

Computation 

Memory Load 

& Store 

 < Generation > 

Memory BW 

Inference Finish 

Inference Finish 

Memory BW 

[source] Naver Clova 

Time 

Time 

[source] Google Transformer  



7 

GPT Profiling Result 

• GPT workload consists of Summarization(computing-bound) and Generation(memory–bound) 

• GEMV portion can be 60–80% of total generation latency, which are the target of PIM/PNM 

*Profiling result is measured in A100 System (DeepSpeed + GPT-J 6B, FP16, Input/Output token:7/46) 

  GPT-j: Google JAX framework  Stage Computation Latency 

SUM 78.95 GFLOP 7.62 ms 

GEN 11.28 GFLOP 6.58 ms 

GEMVGEN VECTOR GELU SOFTMAX RESIDUAL ETC GEMMSUM 

Latency  3.8 1.8 2.2 1.4 6.5 

0% 80% 85% 90% 95% 100% 

Number of 

Operations 

Matrix-Matrix/Vector Multiplication Non-Linear Function 

2.12 82.27 

13.46 86.53 

https://community.openai.com/t/how-does-chatgpt-have-such-massive-token-limit/25738/6 



8 

Utilization and Execution Time Breakdown  
• Most of the execution time is spent for the memory copy from the host CPU memory to the GPU memory 

• Utilization for performing GEMV operations (Generation stage) is seriously low, compared to GEMM 

• As # of output tokens increases, GEMV operations dominate the inference time 

Kernel Execution vs Memory Copy GPU HW Utilization 

M
em

cp
y 

C
o

p
y 

(H
o

st
 t

o
 G

P
U

) 
K

er
n

el
 

E
xe

cu
ti

o
n

 

Time (ms) 

*OPT-30B inference on Single A100 GPU (DeepSpeed, FP16 precision) 

50 

Time (ms) 

H
W

 U
ti

li
za

ti
o

n
 (%

) 

0 

100 
GEMV GEMM Non-Linear Etc. 

*GPT-J 6B profiling result (NVIDIA nsight system and compute) 



9 

Acceleration by PIM/PNM on Generation stage 

• Generation stage on GPT requires high capacity and bandwidth memory 

• MHA and FFN can be fully offloaded to PIM/PNM, exploiting full bandwidth provided by PIM/PNM 

• As a result, PIM/PNM can significantly reduce the time and energy spent on inference 

Summarization 

LM 

Generation Stage 

“Hello, my name” 

“is” “James” “Smith” “and” “.” 

LM LM LM LM 

GEMV Computation dominated 

2.1% 

0% 25% 50% 75% 

GEMV accounts for 82.3% of total computation time (GPU) 7.8% 7.9% 

100% 

GEMV GEMM Non-Linear Etc. *GPT-J 6B latency breakdown on A100 GPU 

<Generation with PIM/PNM> 

Computation 

Memory Load 

& Store 

Internal memory BW x4 

Computation 

Memory Load 

& Store 

In
fe

re
n

c
e

 f
in

is
h

 

 < Generation > 

Memory BW 

Energy reduction 

In
fe

re
n

c
e

 f
in

is
h

 

Memory BW 

Time 

Time 



10 

PIM Solution  
Redesigned to Advance AI : HBM-PIM / LPDDR-PIM 



11 

Energy Advantage of PIM on Generative AI 
• Since OpenAI focuses on developing new AI technologies and pushing the boundaries of what can be done 

with AI, it is likely that they will explore the use of PIM technology in the future. 

• In ISSCC 2023, AMD mentioned 

• Key algorithmic kernels can be executed directly in memory, saving precious communication energy 

• PIM can reduce energy by 85% compared with conventional HBMs 

[source] AMD ISSCC  

Future HBM-PIM concept 

[source] Samsung, MemCon  

Processing-in-Memory 



12 

Generative AI on HBM-PIM 
• Experimental setup: GPT-J (6B, 32 input tokens), single AMD MI100-PIM GPU 

• About 2x greater system energy efficiency compared to the GPU with a normal HBM 

• GPT can be accelerated by more than 2x over baseline 

Performance gain 

(32, 64) (32, 256) 

1 

2 

S
p

e
e
d

-u
p

 

HBM 

HBM-PIM 

2.33x 

2.16x 

(# of input tokens, # of output tokens)  

Energy efficiency 

1 

2 

R
e
la

ti
v
e
 e

n
e
rg

y
 e

ff
ic

ie
n

cy
 

HBM 

HBM-PIM 

2.24x 

1.79x 

(# of input tokens, # of output tokens)  

(32, 64) (32, 256) 



13 

Architecture of HBM-PIM Cluster 

• Installed 96 AMD MI100 GPUs fabricated with HBM-PIM  

• Accelerate large-scale workloads with high energy efficiency and low latency 

Server node 

· 8 MI100-PIM GPUs per node 

AMD MI100-PIM GPU 

· Capacity : 24GB (4 cubes) 

· PIM performance : 4.9 TFLOPS 

. GPU performance : 184.6 TFLOPS (FP16) 

HBM-PIM cluster 

· Total 96 MI100-PIM GPUs in a cluster 

. 12 nodes interconnected 

   through 200G InfiniBand network  

   (bi-section bandwidth : 1.2TB/s) 

. Total memory capacity : 2.25TB 

. Total PIM performance : 471.9 TFLOPS 

. Total GPU performance : 17.7 PFLOPS (FP16) 



14 

• DeepSpeed MoE replaces “T5LayerFF” layers to accelerate T5-large model with PIM  

• The MoE layers are updated to use our PimPyLibrary* APIs 

MoE deployment on HBM-PIM cluster T5-MoE model architecture 

T5LayerSelfAttention 

T5LayerFF 

T5LayerNorm 

T5EncoderBlock (0 ~ 5) 

T5LayerCrossAttention 

T5LayerFF 

T5LayerNorm 

T5LayerSelfAttention 

T5DecoderBlock (0 ~ 5) 

DeepSpeed MoE 

Dense PimDense 

Relu PimRelu 

Dense PimDense 

pytorch PimPyLibrary* 

Embedding 

T5EncoderStack 

T5DecoderStack 

T5LayerNorm 

Linear 

Process 

(GPU0) 

E E … 

Each process is mapped to a GPU 

Process 

(GPU0) 

E E … 

Process 

(GPU0) 

E E … 

Process 

(GPU0) 

E E … 

Process 

(GPU0) 

E E … 

Process 

(GPU0) 

E E … 

Expert ROCmTM collective communication library E 

Node 

… 

40-port 40-port 

2 2 2 

200Gbps IB 

16 

* PimPyLibrary is a python library for providing PIM-enabled AI operators. PIM SDK provides not only PimPyLibrary but also full SW stack for utilizing PIM 

(Mixture of Experts)  Workload : T5(Transformer)-Based MoE Model 



15 

Performance gain 

32 MI100 GPUs 64 MI100 GPUs 

1 

2 

3 

S
p

e
e
d

-u
p

 

HBM 

HBM-PIM 

• More than 3x greater system energy efficiency compared to normal GPU clusters 

• Increases performance by more than 2x over baseline 

* Acknowledgement: Jaeyoung Heo and professor Sungjoo Yoo (Seoul National University) provided the idea of PIM acceleration for this workload 

2.06x 

2.71x 

Energy efficiency 

32 MI100 GPUs 64 MI100 GPUs 

1 

2 

3 

R
e
la

ti
v
e
 e

n
e
rg

y
 e

ff
ic

ie
n

cy
 

HBM 

HBM-PIM 

2.88x 

3.61x 

Energy Efficiency and Performance on MoE Model 



16 

PIM S/W Stack for AI 
• Support existing AI frameworks (e.g., PyTorch and TF) for users to utilize PIM functions  

• PIM Runtime Library: Apply PIM and provide operator-level optimizations during PIM operation 

• PIM AI Compiler: Provide graph-level optimizations during end-to-end execution 

1 

R
e
la

ti
v
e
 L

a
te

n
cy

 

RNNT GNMT 

0.8 

0.6 

0.4 

0.2 

0 

PIM Runtime Library 

PIM AI Compiler 

PyTorch ATen 

Effect of PIM with S/W optimizations Execution Pipeline Optimization Examples 

PIM Runtime 

Library 

AI Acceleration 

Libraries 

Graph-level Optimizer 

Target-dependent Optimizer 

Preloader 

Compiler Module 

Runtime Module 

P
IM

 A
I 
C

o
m

p
il
e
r 

Optimizers 

Op. Fusion Reconstruct graph 

Executor 

ROCmTM  

Library 
PIM Runtime 

Library 

ATen 

Library 

PIM Labeled Op. 

Labeling Op. 

Executor 

PIM Runtime 

Library effect 

PimAiCompiler 

effect 

2.1x 1.8x 

• Operator Fusion is to mitigate kernel load overhead 

• Reconstruct graph is to make possible to run on PIM 

• Runtime choose appropriate library per given tensor 

PyTorch Torchscript model 

1.2x 
1.2x 



17 

SYCL GEMV performance 

4096x1024 4096x2048 8192x1024 16384x102

4 

8192x2048 

1 

2 

3 

4 

5 

6 

E
xe

cu
ti

o
n

 t
im

e
 (

m
s)

 

0 

Matrix Size (number of elements, 16-bit) 

Promising Standard Programming Models 

• PIM-SYCL accelerates upcoming HPC/AI applications on heterogeneous platform 

- SYCL supports CPU/GPU/NPU/FPGA in modern C++ template 

• PIM-OpenACC is under development for legacy scientific applications 

- OpenACC enables incremental parallelization from C/Fortran serial code 

SYCL GEMV source code 

// Buffer Allocation 

buffer<sycl::half, 2> M{matrix, range<2>{N, N}};  

buffer<sycl::half> X{in, range<1>{N}};  

buffer<sycl::half> Y{out, range<1>{N}};  

 

// Parallel Execution 

q.submit([&](ext::samsung::pim_handler &ph) { 

  ext::samsung::pim_accessor accM{M, ph, sycl::read_only}; 

  ext::samsung::pim_accessor accX{X, ph, sycl::read_only}; 

  ext::samsung::pim_accessor accY{Y, ph, sycl::write_only, 

    sycl::property::no_init{}}; 

 

  ph.gemv(accY, accX, accM); 

}); 

w/ PIM 

w/o PIM 



18 

• OneMCC (Memory Coupled-Computing) is an open & standard S/W for PIM, PNM, CXL solutions 

• Plan to provide standard programming model to support multi-architecture and domain 

• Boost AI and HPC workloads with a variety of accelerators like CPUs, GPUs, and NPUs 

OneMCC S/W Standardization (To be) 

 
 
 
 
 
 
 
 
 

Back-end (NPU, GPU, CPU) 

Front-end (Model/Data Analyzer) 

Middle-end (Scheduler, Optimizer) 

MCC Back-end (PIM, PNM, CXL) 

UDLC (Universal Deep Learning Compiler)  
 
 
 
 
 
 
 
 

Device Runtime (NPU, GPU, CPU) 

Node Runtime (Cluster) 

Host Runtime (Server) 

MCC Runtime (PIM, PNM, CXL) 

UDLR (Universal Deep Learning Runtime) 

PIM Simulator PNM Simulator CXL Simulator 

Host System Simulator (CPU, NPU, GPU) 

Simulation Infrastructure 

AI S/W Inference & Training  General Programming Model (SYCL, OpenACC/MP) 

 
 
 
 
 
 
 
 
 

Pytorch Framework MCCPythonAPI 

Debug / Tools 

Benchmark Tool 

Memory Profiler Debugger 

 
 
 
 
 
 
 
 
 

SYCL Compiler 
 
 
 
 
 
 
 
 
 

SYCL Linker 

 
 
 
 
 
 
 
 
 

SYCL Plugin 

 
 
 
 
 
 
 
 
 

SYCL Runtime 

MCC Backend MCC Runtime 

PIM/PNM/CXL MCC Object 

SYCL-MCC Application 
 
 
 
 
 
 
 
 
 

OpenACC(MP) Compiler 
 
 
 
 
 
 
 
 
 

OpenACC(MP) Runtime 

MCC backend 

PIM/PNM/CXL 

OpenACC/MP-MCC Application 

flacc, clacc 

CPU, GPU libs 

PIM Driver PNM Driver CXL Driver 

MCC Core Driver 

System S/W (Kernel Level Driver) 

System Function 
Acc. Library 

MCC 
Handler 

MCC 
Requestor 

MCC Device Virtual Interface 

Unified 
Memory 
Manager 

MCC Simulator Plugin Interface 

MCC Monitor 

OneMCC Infrastructure 



19 

Processing-in-Memory for On-device Generative AI 
• Expanding On-device AI Necessity: 

- Data center costs and power consumption are increasing due to the growing demand for cloud AI 

- Privacy concerns are rising as sensitive data is transmitted to the cloud for processing 

- Network connectivity is not always reliable or available, particularly in remote areas 

• LPDDR-PIM  improves battery life by preventing memory over-provisioning just for bandwidth 



20 

 
 
 
 
 
 
 
 
 
 

xPU 

PIM Data Movement 

LP-PIM 

LPDDR-PIM Concept 
• Improve the 4.5x performance and save 72% of energy in the system with in-DRAM processing 

- Performance: Utilize up to 8× higher in-DRAM bandwidth by multi-bank parallel operation 

- Energy Efficiency: Reduce data movement energy by utilizing PIM unit  

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

 

Memory Bandwidth 

Compute-bounded Op. 

(e.g. CNN) Ideal Performance Peak 

P
e

rf
o

rm
a

n
c
e

 

NPU-LP5 NPU-PIM 

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n
 

NPU-LP5 NPU-PIM 

System Performance and Energy Comparison 

* CNN: Convolutional Neural Network 

* RNN: Recurrent Neural Network 

* MLP: Multi-layer Perceptron 

* RM: Recommendation Model 

 

LP5-xPU System 

 
 
 
 
 
 
 
 
 
 

xPU 
LP 

Normal Data Movement  

PIM-xPU System 

PIM Unit PIM Unit PIM Unit PIM Unit 

PIM Unit PIM Unit PIM Unit PIM Unit 

Bank Bank Bank Bank 

Bank Bank Bank Bank 

Peripherals 



21 

LPDDR-PIM Features 
• Peak internal bandwidth: 102.4 GB/s 

- Using Bank-level parallelism, 8x bandwidth of the base LPDDR product 

• Supporting native integer/floating point arithmetic and logical (and/or/…) operations 

• Peak performance: 102.4 GFLOPS/s (FP16), 204.8 GOPS/s (INT8) 

• Acceleration target: memory-bounded operations such as BLAS1 and BLAS2 

• Samsung can support LPDDR-PIM simulator package to measure performance gain & energy reduction 

Bank Parallelism  

[ RNNT ] [ Transformer ] [ GPT2 ] 

Perf. gain: 4.51x 2.85x 4.47x 

Energy reduction: -72.5% -58.5% -70.6% 

RNNT Transformer 

0.2 

0.6 

1 

N
o

rm
a
li
ze

d
 

E
xe

cu
ti

o
n

 T
im

e
 

GPT2 

100 

60 

20 

N
o

rm
a
li
ze

d
 

E
n

e
rg

y
 (

%
) 

baseline (NPU only) 

40 

80 

End-to-end inference on AI application (simulation-based) 

PIM Unit 

Bank 

Bank 

PIM Unit 

Bank 

Bank 

BLAS1: Element-wise addition/multiplication  

            or layer normalization 

BLAS2: vector-matrix multiplications 



22 

LPDDR-PIM Architecture 
• PIM Unit is placed between every 1 bank (maximum performance) or 2 banks (moderate area overhead) 

• PIM Unit: 256-bit SIMD FPU and registers (~640 bytes per PIM block) 

– Supporting operations: FP16 multiplication, FP32 accumulation, int8 arithmetic, etc. 

– PIM registers : Instruction (IRF), Vector (VRF), and Scalar (SRF) 

 

 

 

 

 

*Not scaled to  

actual physical silicon area 

DRAM Bank (Cell) 

PIM Block  

PIM Support Modules 

PAD 

Bank 
Normal 

DRAM 

operation 

FP16 (Mult) 

FP32 (Add) 
INT8 Logical 

DRAM 

Bank 

IOSA 

PIM Interconnect 

VRF (16~) 

SRF (TBD) 
IRF 

(16~32) 

Controls 

DRAM global IO 

PIM  

operation 



23 

LPDDR-PIM System Performance/Power Analysis 

• Evaluate the performance and power consumption of GPT2 

• LP5-PIM improves energy efficiency by shorter execution time 

 

 

 

 

 

 

 

• Power consumption of DRAM internal component (red) increases proportionally 

• Power consumption of global I/O bus (light red) and I/O PHYs (light blue) considerably decreases 

 

 

Speedup 
(4.47x) 

Speedup 
(2.71x) 

Energy 
consumption 
(-69%) 

Energy consumption 
(-71%)   

  
  
  

  
 P

H
Y

 

Host LP5-PIM 

DRAM Bank (Cell) 

PIM Block    
 P

A
D

 

PIM block to IO 

DRAM cell 

to PIM block 

DRAM cell 

to PIM block I/O PHY/BUS 

Normal Data Movement 

PIM Data Movement 

* Simulation experiment uses 4 memory (lp5/pim) channels 
* lp5pim (DRAM cell to PIM block) includes ACT, PRE, IDLE, and REF 
* The result of simulation is that more than 99% of memory traffic decreases by PIM 
* host (core) includes processing and IDLE power 

[host + lpddr5] [host + lp5pim (8x: 1 bank/PIM block)] [host + lp5pim (4x: 2 bank/PIM block)] 
* The power ratio is 17.9% (DRAM cell to IOSA), 31.3% (IOSA to IO), 31.1% (PHY), and 19.7% (core) for baseline. 
* The power ratios are 85.3% (DRAM cell to PIM block), 14.6% (core), and 0.1% (etc) for lp5-pim(8x), and 76.9% (DRAM cell to PIM block), 23% (core), 
and 0.1% (etc) for lp5-pim(8x), respectively. 



CXL-PNM 
Industry’s 1st CXL-PNM (Processing-near-Memory)  



25 

• A CXL-based Processing-near-Memory (PNM) Solution 

• Two types of CXL-PNM: on CXL controller and on device memory 

 

 
 
 
 
 
 
 
 
 
 

Typical CXL Memory Expander (Type 3) DD

R 

DD

R 

MC 

CPU 
CXL 

CTRL 

M
C

 

Device 

Memory 

Device 

Memory 

Device 

Memory 

Device 

Memory 

Device 

Memory 

Device 

Memory 

CXL.io 

CXL.mem 

… 

 
 
 
 
 
 
 
 
 
 

DDR DDR 

MC 

CPU 
CXL 

CTRL 

CXL-PNM on CXL Controller 

Device 

Memory 

Device 

Memory 

Device 

Memory 

Device 

Memory 

Device 

Memory 

Device 

Memory 

CXL.io 

CXL.mem 

M
C

 
M

C
 

PNM … 

 
 
 
 
 
 
 
 
 
 

DDR DDR 

MC 

CPU 
CXL 

CTRL 

M
C

 

CXL-PNM on Device Memory 

Device 

Memory 

Device 

Memory 

Device 

Memory 

Device 

Memory 

Device 

Memory 

Device 

Memory 

CXL.io 

CXL.mem 

PNM PNM PNM 

PNM PNM PNM 

… 

CXL-PNM Architecture 



26 

• Heterogeneous compute unit (PE Array and Adder-Tree) on PNM Engine 

– Adder-tree designed to perform GEMV operation (Generation stage) 

– PE Array for acceleration of GEMM operation (Summarization stage) 

 

 

CXL-PNM Architecture for GPT 



27 

• CXL-PNM is able to be used for a wider range of systems including AI/ML accelerators 

• Compared to other solutions, it can give unique trade-off among capacity, bandwidth, and power 

• CXL-PNM can provide 512GB capacity and 1.1TB/s bandwidth 

 

512GB 1.1TB/s CXL-PNM Concept 

CXL-PNM Module Concept 512Gb DRAM Package 



28 

• CXL-PNM software stack for users to seamlessly and transparently utilizes the CXL-PNM platform 

• CXL-PNM software stack includes user-level of library, runtime and kernel level of device driver 

• CXL-PNM software stack supports two execution paths 
• Native execution path – Automatically offload PNM operation without modification of application source code 

• Direct execution path – Explicitly call PNM operations on the user application 

CXL-PNM Software Stack 

K
er

n
el

 
Le

ve
l 

DAX Driver CXL-PNM Device Driver 

Device Driver 

CXL-DRAM 

CXL-PNM Hardware 

CXL-PNM Software Stack 

CXL-PNM Library and Runtime (C++) 

U
se

r 
Le

ve
l 

H
/W

 
Le

ve
l 

CXL.mem 

CXL.io 

User 

Exist 

Samsung 

PNM Registers 

DL Application (GPT, DLRM, IMDB…) 

PhyTorch Caffe 

CXL-PNM Phython Library 
Native execution path  

Direct execution path  

Execution path 



29 

• End-to-end performance evaluation of GPU and CXL-PNM with the same number of devices 

– CXL-PNM gives 2.9× higher energy efficiency, only 10.8% lower throughput, compared to A-GPU 

– However, CXL-PNM with large capacity can accelerate large-scale LLMs w/o any communication overhead 

– Multiple CXL-PNM can offer 4.4× higher energy efficiency and 53% higher throughput than multiple GPUs  

 

Energy and Throughput Comparison for LLM 

• Single Device (OPT-13B), 8 Device (OPT-66B), input token(64) output token(1024) 

Throughput 
(Token/Second) 

A-GPU 

(1 device) 

CXL-PNM 

(1 device) 

-0.1x 

A-GPU 

(8 devices) 

CXL-PNM 

(8 devices) 

1.53x 

Energy Efficiency 
(Token/Energy) 

A-GPU 

(1 device) 

CXL-PNM 

(1 device) 

A-GPU 

(8 devices) 

CXL-PNM 

(8 devices) 

2.89x 
4.4x 



30 

CO2 Emission Reduction by CXL-PNM 
• Operating/Environmental (Energy/CO2) cost of GPU/CXL-PNM appliance with eight devices 

– GPU appliance is 2.8× more expensive than CXL-PNM appliance for the environmental cost 

– Operating efficiency of CXL-PNM appliance reduces the amount of CO2 emission   

– CXL-PNM appliance is 4.3× more efficient than that of GPU appliance   

GPU  

Appliance 

CXL-PNM 

Appliance 

CO2 Emission 
(KG/day) 

-2.8x 

GPU  

Appliance 

CXL-PNM 

Appliance 

Operating Efficiency 
(Tokens/Energy Cost) 

GPU  

Appliance 

CXL-PNM 

Appliance 

Environmental Efficiency 
(Token/Environmental Cost) 

4.26x 

• GPU Appliance (A-GPU server System with 8 A-GPU, FasterTransformer), CXL-PNM Appliance (8 CXL-PNM Card) 

4.28x 



31 Samsung Semiconductor 

Samsung AI memory 


