P870 High-Performance RISC-V Processor
RISC-V is based on **standards**

Standards Accelerate Software Adoption and Portability

- Standards reduce cost
 - Faster Adoption
 - Compatibility across vendors

- Layered standards enable customization
 - RISC-V embraces customization without breaking compatibility

- More than just ISA Standards
 - RISC-V Standards extend beyond the Core ISA to system-level components

Example SoC

Microcontroller Processor

- **RVM-CSI Platform**
 - Specifies ISA Profile and System Level Requirements for a common RISC-V MCU

- **RVM23 Profile**
 - Specifies a set of RISC-V ISA extensions suitable for Microcontrollers

Application Processor

- **OS-A Platform**
 - Specifies ISA Profile and System Level Requirements for a common RISC-V APU

- **RVA23 Profile**
 - Specifies a set of RISC-V ISA extensions suitable for Application Processors

Accelerators

- **RVA23 Profile**
 - Specifies a set of RISC-V ISA extensions suitable for Application Processors

- **Custom**
 - RISC-V allows for custom instructions without breaking compatibility with existing software

WorldGuard

RISC-V Advanced Interrupt Architecture

Debug and Trace
SiFive Performance family relentless innovation

- P550
- P450/P470
- P650/P670
- RVA22/RVA23
- RVA20+
- P870
- P870-A
- RVA23

- More performance
- Higher core count
- Leading RISC-V feature deployment
- Automotive specific features

3rd generation OoO core

Customer In-Silicon Dates

2022 2023 2024
SiFive Provides **Complete & Scalable** Solutions

SiFive IP Complex

- **CPU Clusters**
- **SiFive Cores**
- **Scalable Coherent Interconnect**
- **Advanced Power Management**

** Scalable High-Performance & High-Efficiency**
Cores: P870, P670, & P470 (with selected Mix+Match)

Shared Cluster L2 Cache

System IP to Enable Complete RISC-V SoC solutions

Advanced Interrupt Controller
SiFive Insight Debug & Trace
IOMMU
SiFive WorldGuard Security
P870 Pipeline

Branch Predict/Fetch

Decode/Rename

Integer

Load/Store

Floating Point

Vector
P870 μArch

36-byte fetch

Instruction Cache
64KB

Decode
 Rename
 Dispatch
 6-wide

Vector Sequencer

Vector Disp Buffer

Iss Q

ADD MUL MAC

Crypt

Div

Perm

Float Point Disp Buffer

Iss Q

ADD MUL MAC

DIV SQR

Integer Dispatch Buffer

Iss Q

ALU

ALU

ALU

BR

ALU

BR

Load/Store Dispatch Buffer

Issue Q

AGU

AGU

AGU

LD

LDST

LDST

Prefetchers

Data Cache
64KB

32-byte/cycle

Shared L3

32-byte/cycle

Cluster L2

32-byte/cycle

©2023 SiFive

©2023 SiFive
P870 µArch

- 64k Icache with 32-byte/cycle fill
- 1K Next Line Predictor
- 64-entry Return Address Stack
- 16K entry TAGE Direction Predictor
- 2.5K entry Indirect Predictor
- 36-byte Fetch
- 32 entry ITLB
P870 µArch

- 6-wide decode
- 32-bit and 16-bit instructions
- Register Renames:
 - 228 Integer
 - 240 Floating Point
 - 128 Vector
- ROB – up to 1120 instructions
- 6-wide dispatch
P870 µArch

- Vector Sequencer unrolls multi-register instructions
- 32 Vector issue queue entries
- Two 128-bit, mostly symmetric, vector execution pipelines
- Dual Crypto Units
P870 µArch

- 48 FP Issue queue entries
- Two mostly symmetric FP pipelines
- 2-cycle fadd SP/DP
- 2-cycle fmul SP/DP
- 4-cycle fmac SP/DP
P870 µArch

- 96 Integer issue queue entries
- 4 ALU units
- 1 branch units
- 1 BR/ALU Unit

Vector Sequencer

Vector Disp Buffer

Iss Q

ADD

MUL

MAC

Crypt

Div

Perm

Float Point Disp Buffer

Iss Q

ADD

MUL

MAC

Crypt

Div

Mask

Integer Dispatch Buffer

Iss Q

Iss Q

Iss Q

Iss Q

Iss Q

Iss Q

ALU

ALU

ALU

ALU

BR

BR

MUL

MUL

Div

Sqrt

Integer Dispatch Buffer

Prefetchers

Data Cache 64KB

NLP

RAS

Cond BP

Ind BP

Shared L3

Cluster L2

32-byte/cycle

32-byte/cycle

36-byte fetch

Instruction Cache 64KB

64KB

32-byte/cycle
P870 µArch

- 64KB Data Cache
- 1 Load pipe
- 2 Load/Store pipes
- 32 LdSt issue queue entries
- 48 Load buffer
- 48 Store buffers
- 64 entry L1 DTLB
- 1K entry L2 TLB
- Stride and pattern prefetchers
P870 µArch

- Shared Cluster L2 Cache
 - Up to 4 cores per L2
 - L3 Cache Shared with all Clusters
 - 32 byte/cycle evicts and fills
Cluster topology with shared L2 cache and distributed L3 cache
P870 Consumer example platform

SiFive Advanced
Debug & Interrupt

Interrupt Controller

Debug & Trace

SiFive CPU Clusters

Performance cluster

High-efficiency cluster

Always-On cluster

P870 P870

Shared L2$

P470 P470

Shared L2$

P470 P470

Shared L2$

E6

Shared L3$

SiFive System IPs

IOMMU

WorldGuard gadgets
P870-A Functional safety features

- Core pairs in lockstep
- Online diagnostic and STL
- SECDED ECC
- High integrity L2/L3 cache controllers and SECDED ECC
- Advanced RAS architecture enabling error configuration, reporting, reaction and injection
- Multi-Cluster Coherent Crossbar
- Multi-Cluster Non-Coherent Crossbar
- Cluster bus and crossbar with error detection code and error handling
- High integrity interrupt controller
- ASIL D
- ASIL B
- Core Clusters
 - CPU Tile 0
 - CPU Tile 1
 - CPU Tile 2
 - CPU Tile 3
 - L1 I$ L1 D$
 - L2$ slice 0 L2$ slice 1
 - L3$ slice 0 L3$ slice 1
- Memory Ports
- System, Peripheral, Front ports
- Debug
- Interrupt
SiFive broad IP portfolio
Scalable from MCU to high-performance compute

<table>
<thead>
<tr>
<th>Automotive</th>
<th>Intelligence</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>P870-A</td>
<td>X200-Series</td>
<td>P500-Series</td>
</tr>
<tr>
<td>64-bit</td>
<td>AI processor for Edge</td>
<td>>8.6 SpecInt 2k6/GHz</td>
</tr>
<tr>
<td></td>
<td>Hypervisor extension</td>
<td>3-wide OoO core</td>
</tr>
<tr>
<td></td>
<td>Vector crypto</td>
<td>RVA20+</td>
</tr>
<tr>
<td></td>
<td>IOMMU & AIA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WorldGuard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shared cluster cache</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RVA23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASIL B, D</td>
<td></td>
</tr>
</tbody>
</table>

S7-A		P400-Series
32/64-bit		>8.6 SpecInt 2k6/GHz
		3-wide OoO core
		RVA22
E6-A		P600-Series
32-bit, balanced		>13.1 SpecInt 2k6/GHz
	performance and efficiency	4-wide OoO core
	ASIL B, D	RVA22

Essential		P800-Series
U6-Series		>18 SpecInt 2k6/GHz
64-bit, high		6-wide OoO core
	performance	128b vector length
S2-Series		Hypervisor extension
64-bit, Area		
	optimized	

E2-Series	S6-Series	S7-Series
32-bit, balanced		64-bit, high
	performance and efficiency	performance
		embedded

E6-Series		
32-bit, optimized		
E7-Series		

©2023 SiFive
Empowering innovators

www.sifive.com