Notices and Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

Intel contributes to the development of benchmarks by participating in, sponsoring, and/or contributing technical support to various benchmarking groups, including the BenchmarkXPRT Development Community administered by Principled Technologies.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Some results may have been estimated or simulated.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

All product plans and roadmaps are subject to change without notice.

Statements in this document that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that could cause actual results to differ materially, see our most recent earnings release and SEC filings at www.intc.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
The Next Generation of High Performance, Energy-Efficient Computing: Intel® Xeon® Processors Built on Efficient-Core

Don Soltis
Senior Principal Engineer, Xeon with Efficient-Core Architect, Intel

Stephen Robinson
Intel Fellow, Efficiency Core Architect
Data Center Requirements Are Expanding

Continuing demand to increase core performance, power efficiency and throughput performance

Deliver the best performance per Watt at the desired core performance

Workload requirements place trade-offs between core performance & core density

Expanding deployment models demanding increased power, IO & memory bandwidth
Expanded Xeon Product Portfolio with Optimized Processors

P-core

Optimized for **Performance**
in Compute Intensive & AI Workloads

E-core

Optimized for **Efficiency**
in High Density & Scale-out Workloads

Common Platform Foundation & Shared Software Stack
Intel’s Newest Data Center Efficiency Optimized E-Core Microarchitecture

Designed for scalable throughput performance

Optimized for power and density efficient throughput with:

- **Deep Front-End** with on-demand length decode
- **Wide Back-End** with many execution ports
- **Optimized Design** for latest transistor technologies

Data Center Ready

Intel Xeon with E-cores (Sierra Forest)
Core Instruction Control

- **Large instruction cache (64KB)** with an on-demand instruction length decoder accelerates modern workloads with large code footprints.

- **Dual three wide out of order decoders** enable up to 6 instructions per cycle while keeping power and latency in check.

- **Accurate branch prediction** through deep branch history and large structure sizes.

Intel Xeon with E-cores (Sierra Forest)
Core Execution

- **Five-wide allocation with eight-wide retire**
 Provides parallelism

- **256 entry out of order window**
 Discovers data parallelism

- **Seventeen execution ports**
 Executes data parallelism

Allocate / Rename / Move Elimination / Zero Idiom

Memory

Port 00 Port 01 Port 02 Port 03 Port 10 Port 11 Port 12 Port 13 Port 30 Port 31 Port 08 Port 09 Port 28 Port 29 Port 20 Port 21 Port 22

Vector/Float

Vector Engine
Seventeen Execution Ports
to address a breadth of workloads
dedicated hardware improves efficiency

4 Integer ALUs
2 Load AGUs
2 Store AGUs
2 Jump ports

2 Integer Store Data
2 FP Store Data
2 FP stacks
3 Vec ALU

Intel Xeon with E-cores (Sierra Forest)
Core Memory Subsystem

Advanced Prefetchers
- at all cache levels to detect a wide variety of streams

Dual Load + Dual Store

Deep buffering
- Supporting 64 outstanding misses

Xeon® Advanced Features
- L1 Data Cache ECC
- Data Poisoning Support
- Recoverable Machine Check
- Local Machine Check
- 52 physical address bits

Intel® Resource Director Technology
- enables software to control fairness among the cores and between different software threads

Xeon® Advanced Features
- L1 Data Cache ECC
- Data Poisoning Support
- Recoverable Machine Check
- Local Machine Check
- 52 physical address bits

Core Memory Subsystem Map:
- Dual Load + Dual Store
- Deep buffering: Supporting 64 outstanding misses
- Intel® Resource Director Technology
- Enabling software to control fairness among cores and between different software threads

L1 Data Cache
- AGU (Access Grammar Unit)

L2 Data Cache
- 4MB shared among two or four cores

L3 Data Cache: 32KB
- 32KB Data Cache

Out of Order Engine

Dual Load + Dual Store

Deep buffering
- Supporting 64 outstanding misses

Xeon® Advanced Features
- L1 Data Cache ECC
- Data Poisoning Support
- Recoverable Machine Check
- Local Machine Check
- 52 physical address bits

Intel® Resource Director Technology
- enables software to control fairness among the cores and between different software threads

Intel Xeon with E-cores (Sierra Forest)
Modern Instruction Set

Security Features

Intel® Control-Flow Enforcement Technology (Intel® CET) designed to improve defense in depth

Intel® VT-rp (Virtualization Technology redirect protection) Supported

Advanced speculative execution validation methodology

Support for Advanced Vector Instructions with AI extensions

Wide Vector Instruction Set Architecture

Floating point multiply-accumulate (FMA) instructions for 2x throughput

Key instruction additions to enable integer AI throughput

Hot Chips 2023
Intel Xeon with E-cores (Sierra Forest)
Core Tile

2 or 4 cores per module
Shared L2 cache
Shared frequency and voltage domain
Shared mesh fabric interface

Each core is single threaded
Providing performance isolation

LLC slice shared among all cores in socket
High bandwidth pipeline per slice
Package View

I/O Chiplet
Common with Xeon P-core (Granite Rapids)
PCIe gen 5, CXL 2.0, UPI coherency links
Crypto, compression, data streaming accelerators
Self-boot

Compute Chiplet
Mesh of core tiles
Single domain, shared Last-Level cache
DDR5 6400 interface

Security Isolation
Intel® Trusted Domain Extensions (Intel TDX)
Intel® Software Guard Extensions (Intel SGX)

Focus on Throughput
Performance
Up to 288 cores (2S)
205W and higher power per socket

1 Common capabilities across both Intel Xeon with P-cores and Intel Xeon with E-cores
Harness the Efficiency of Xeon with E-cores

Improve OpEx and CapEx
Increased performance per Watt at increased core density

Augments Xeon breadth of coverage
Same hardware, software and firmware

Vector and AI Instruction Support
Including support for FP16, BF16 and INT8 data types

Focus on throughput, density and efficiency
Optimize across full range of utilization

Highly Scalable Architecture To Address the Throughput Efficiency Needs For the Next Decade of Compute
Thank You
References

CXL https://www.computeexpresslink.org/

New instruction set extensions