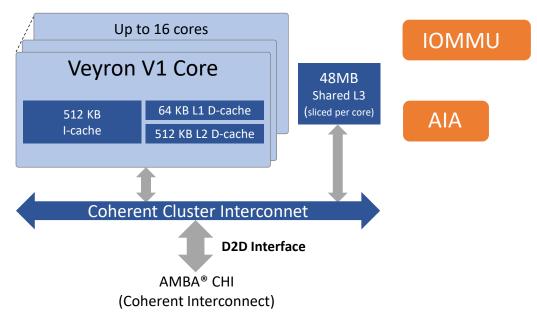
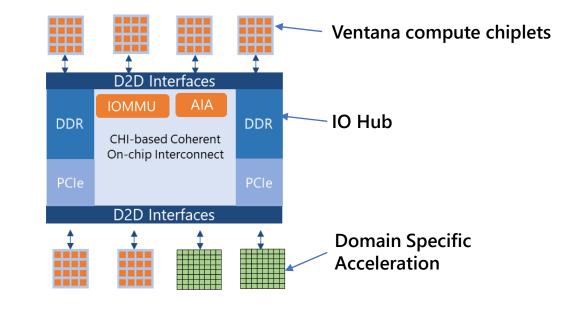
Veyron V1 Data Center-Class RISC-V Processor August 2023

MICRO

Company confidential


Veyron V1 Target Markets



Veyron V1: Server Class RISC-V IP + Chiplets

Veyron Chiplet Solutions

- Superscalar aggressive out-of-order instruction pipeline
- High core count multi-cluster scalability (up to 192 cores)
- Comprehensive RAS features
- IOMMU & Advanced Interrupt Architecture (AIA) system IP

- Rapid productization with chiplets
- Veyron compute chiplets
 - In latest process node technology
 - Scalable CPU performance/count
- IO Hub
 - Implemented in lower-cost process node of choice
 - o Customized for application requirements
- Custom Domain Specific Acceleration

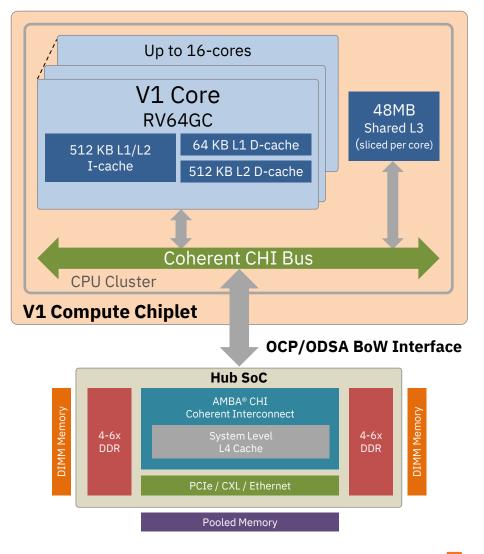
RISC-V Performance Leader

Veyron V1 Overview

16 High Performance RISC-V Cores

- Decode, dispatch, and execute up to eight instructions per cycle
- Symmetric execution of any mix of integer Reg/Ld/St/Br ops per cycle
- Decoupled predict/fetch front-end with advanced branch prediction

High Performance Cache Hierarchy


- 1MB L2 cache per core
- Up to 48MB of globally shared cluster-level L3 cache

Coherent CHI System Integration

- Cluster/chiplet compliant with AMBA Coherent Hub Interface (CHI) system
- ODSA-compliant BoW die-to-die interface covering cost-effective organic to advanced package integrations with Ventana-supplied D2D IP

Server-Class Product

- Full architectural support to run virtualized workloads
- RAS protection of all caches / functional RAMs, with end-to-end data poisoning and background cache scrubbing
- Ground-up microarchitecture with side-channel attack resilience

Veyron V1 Arch/Uarch Overview

RISC-V Architecture Support

- RV64GC plus many additional User, Supervisor, and Machine level architecture extensions
- Hypervisor extension
 - Type 1 and 2 hypervisors; nested virtualization
- Advanced Interrupt Architecture (AIA)
 - Including native MSI handling and interrupt virtualization
- 48-bit virtual addressing and 52-bit physical addressing
- External and self-hosted debug; trace-to-memory
- Rich set of performance events and perf counters

Core Microarchitecture Highlights

- Superscalar, aggressive out-of-order design
- Innovative microarchitecture focused on ...
 - Power-efficiency and high performance
 - Efficient physical implementation and high frequency without custom memory macros
- Decoupled predict / fetch front-end
 - Predict fetch stream ahead of actual just-in-time fetch to keep decode pipe fed
 - Advanced branch prediction of direction and target address
 - High capacity BTB and predictors
 - Fetch up to 64B per cycle; decode up to eight instructions per cycle
 - Code decompression (16b-to-32b) and fusion of common instruction-pair code idioms
- Decode, dispatch, issue, execute, and commit all operate in terms of "ops" (fused and unfused)

Core Microarchitecture Highlights

- Four symmetric integer execution pipes
 - Execute any mix of four register / load / store / branch ops per cycle
 - Int mul/div, pcnt, clmul, and CSR accesses execute via a separate shared execution unit
 - Large associated schedulers 128-entry scheduling window in total
- Constant register loads pre-executed at dispatch
 - Effective zero-cycle latency and no back-end resources consumed
- Scalar FP execution pipe and int/FP transfer/conversion pipe (and associated schedulers)
- Cache and TLB hierarchies optimized for large code and data working sets, and for low latency
 - 512 KB Instruction L2 with power-efficient L0 cache/loop buffer
 - 64 KB Data L1 / 512 KB Data L2 closely coupled for low latency
 - Separate 3K+ entry main Instruction TLB and Data TLB (including caching clusters of similar PTEs)

V1 CPU Pipelines

Restart Pipe					
RPS	RP1	RP2	RP3		

	Fetch Pipe					
QFS	QX1	QX2	QT1	QT2	QD1	QD2
	QT1	QT2				
	QD1	QD2				

Decode Pipe					
DPD	DXE	DRN	DDS		

Int Execute Pipe						
IIS	IOF	IX1				IWB
		IX1	IX2	IX3	IX4	IWB

LS1	LS2	LS3	LS4	LS5

St Commit	
CST	

1	
	Ld Commit
- 1	CST

FP Execute Pipe							
FWK	FIS	FOF	FX1	FX2			FWB
			FX1	FX2	FX3	FX4	FWB

FP Data Transfer Pipe					
XWK	XIS	XOF	XD1	XD2	

Predict, Fetch, and Decode Units

- Predict fetch stream of sequential runs of instructions up to 64B long
 - Single-level 12K-entry BTB and similarly large collection of branch predictors
 - Fully-pipelined, driven by single-cycle Next Lookup Predictor
 - Predicts lookup hashes and history updates
 - Three-cycle redirect on mispredict
- IL2 + ITLB (large single-level instruction cache and instruction TLB)
 - 512 KB IL2
 - Physical I/D partitioning allows separate I and D cache hierarchy optimizations for latency and power, and eliminates code/data conflicts on large footprint workloads
 - Fully pipelined misaligned fetch of up to 64B per cycle
 - Two-cycle latency for overlapped ITLB, IL2 tag, and IL2 data accesses
- First instruction decode pipe stage does ...
 - Decompress 16-bit 'C' instructions to equivalent 32-bit instructions
 - Pre-decode instruction length and find next 8 instruction boundaries
 - Pre-decode instruction pair fusion opportunities
 - Combine all this together to set up muxes to extract instructions from instruction buffer

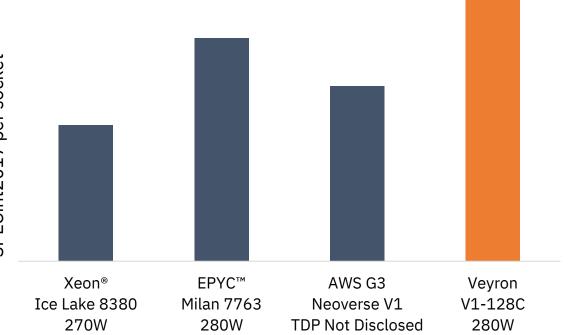
Load/Store Unit

- Can execute any mix of up to four loads and/or stores per cycle
- Closely-coupled L1/L2 data cache hierarchy for low latency
- DL1
 - 64 KB virtual cache (VIVT)
 - Four-cycle load-to-use latency
 - Large single-level DTLB accessed on cache misses (on the way to DL2)
 - Hardware synonym handling multiple read-only synonyms can be co-resident
 - Hardware coherent based on inclusion wrt DL2
 - Hardware TLB consistent wrt TLB invalidates
- 512 KB DL2
 - Pipelined 64B-wide fills into DL1
- Hardware data prefetchers
 - Next line, sequential, strided, and multi-stride patterns
 - Prefetch next line from DL2 into DL1
 - Prefetch much farther ahead from L3/DRAM into DL2 as staging

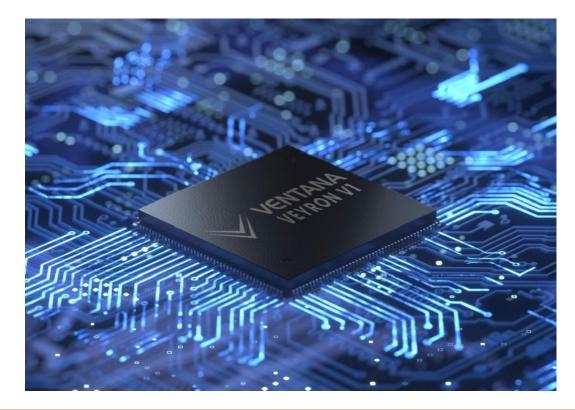
Processor Cluster Highlights

- Support for up to 16 cores
- Cluster-level shared L3 cache
 - Support for up to 48 MB
 - Victim cache with respect to DL2's
 - Non-inclusive (exclusive except for selective shared code/data optimizations)
 - Advanced reuse-based and scan-resistant replacement policies
- N-way sliced L3 / snoop filter organization
 - Each slice responsible for 1/Nth of address space
 - "Core + L3/SF slice" physical building block
 - Per-core (non-shared) cluster-level snoop filters for IL2 and DL2 caches

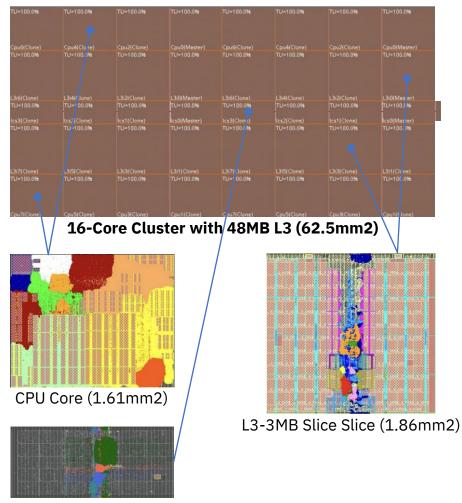
Processor Cluster Highlights (cont.)


- Standard CHI-compatible external interface from cluster to SoC
 - Enables direct connect to 3rd party SOC interconnect IP
- Enhanced intra-cluster cache coherency protocol
 - Comparable to CHI plus features to support various caching optimizations within a cluster
 - Exclusive / non-inclusive cache allocation
 - Data sharing
 - Enhanced L3 replacement policy
- Bidirectional "race track" interconnect topology
 - Equivalent to dual counter-rotating rings with ends cut off
 - Best PPA for up to 16 cores
 - 160 GB/s of bisection data bandwidth at 2.5 GHz

Veyron V1: World's First Server Class RISC-V Processor


Highest Performance RISC-V CPU

3.6GHz in 5nm process technology


ASSP Based on High Performance Chiplet Architecture

Significant reduction in development Time and Cost compared to prevailing monolithic SoC model

Disruptive ROI: Highest Single Socket Performance at Compelling Perf/Watt/\$

Veyron V1 Reference Implementation PPA

Fabric Slice (0.85mm2)

Company confidential

- TSMC 5nm
 - Standard TSMC 5nm metal stack
 - Width linearly scales with tiled dual core+L3 slice
 - Highly portable design across processes and foundries
- Veyron V1 cluster structure
 - Up to 16 cores with fixed private 512 KB IL2 and 64 KB DL1 / 512 KB DL2
 - Up to 48 MB shared L3, physically sliced per core
 - Configurable 2/4/8/16 Core+L3 slices, 3.0/1.5/0.75 MB L3 per core
- 5-6 SPECint2017 @ 3.6GHz with 40W total cluster power
 - Excellent multi-core scalability with high bandwidth interconnect and large L3 cache
 - Dedicated core per thread provides superior multi-core performance compared to large SMT2 cluster (equal threads, same area, twice the cores)
- Per-core power under max "TDP" workloads
 - <0.9W @ 2.4 GHz
 - 1.9W @ 3.2 GHz
- Active "Turbo" power management
 - Per cluster DVFS, per core DFS
 - Accurate digital power model for all components of cluster
 - Temp sensor coverage across entire cluster
 - Configurable TDP

Thank You

Company confidential